On the global implicit criterion of a fracture propagation
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Validation is carried out of the previously proposed implicit criterion for choosing the direction of a fracture propagation under the complex loading characterized by the presence of all three modes of the stress intensity factors $K_{\mathrm{I}}$, $K_{\mathrm{II}}$, and $K_{\mathrm{III}}$. The criterion is based on the principle of local symmetry according to which the fracture propagates in the direction providing the zero values of the factors of both mixed modes $K_{\mathrm{II}}$ and $K_{\mathrm{III}}$. Since in the general case the two conditions cannot be satisfied simultaneously, the criterion is formulated as a minimization problem for a functional that contains the sum of the values of the mixed modes integrated along the entire front of the fracture. The formulation of the criterion includes some parameter that describes the effect of each of the mixed modes; the value of this parameter should be chosen by using the experimental data. Based on two fracture propagation experiments with complex mixed loading, validation of the criterion is carried out and some estimates are given for the interval of the best value of the weight parameter.
Keywords: fracture growth criterion, mixed loading.
@article{SJIM_2019_22_4_a3,
     author = {V. Lapin and A. Fomina},
     title = {On the global implicit criterion of a fracture propagation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a3/}
}
TY  - JOUR
AU  - V. Lapin
AU  - A. Fomina
TI  - On the global implicit criterion of a fracture propagation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 33
EP  - 43
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a3/
LA  - ru
ID  - SJIM_2019_22_4_a3
ER  - 
%0 Journal Article
%A V. Lapin
%A A. Fomina
%T On the global implicit criterion of a fracture propagation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 33-43
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a3/
%G ru
%F SJIM_2019_22_4_a3
V. Lapin; A. Fomina. On the global implicit criterion of a fracture propagation. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 33-43. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a3/

[1] A. A. Griffith, “The phenomena of rupture and flow in solids”, Philosophical Trans. Royal Soc. London. Ser. A, 221 (1921), 163–198 | DOI

[2] G. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate”, J. Appl. Mech., 24 (1957), 361–364

[3] F. Erdogan, G. C. Sih, “On the crack extension in plates under plane loading and transverse shear”, J. Basic Engrg., 10:3 (1974), 305–321

[4] G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems”, Internat. J. Fracture, 10:3 (1974), 305–321 | DOI

[5] R. J. Nuismer, “An energy release rate criterion for mixed mode fracture”, Internat. J. Fracture, 11:2 (1975), 245–250 | DOI

[6] M. A. Hussain, S. L. Pu, J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II”, Fract. Anal., STP, 560, ASTM, 1974, 2–28 | DOI

[7] M. Schollmann, H. A. Richard, G. Kullmer, M. Fulland, “A new criterion for the prediction of crack development in multiaxially loaded structures”, Internat. J. Fracture, 117:2 (2002), 129–141 | DOI

[8] H. A. Richard, M. Fulland, M. Sander, “Theoretical crack path prediction”, Fatigue Fracture of Engineering Materials and Structures, 28:1–2 (2005), 3–12 | DOI

[9] F. G. Buchholz, A. Chergui, H. A. Richard, “Fracture analyses and experimental results of crack growth under general mixed mode loading conditions”, Engineering Fracture Mech., 71:4 (2004), 455–468 | DOI | MR

[10] M. R. M. Aliha, E. Linul, A. Bahmani, L. Marsavina, “Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading”, RPolymer Testing, 67 (2018), 75–83 | DOI

[11] S. Safaei, M. R. Ayatollahi, B. Saboori, “Fracture behavior of GPPS brittle polymer under mixed mode I/III loading”, Theor. Appl. Fracture Mech., 91 (2017), 103–115 | DOI

[12] K. H. Pham, K. Ravi-Chandar, “On the growth of cracks under mixed-mode I + III loading”, Internat. J. Fracture, 199:1 (2016), 105–134 | DOI | MR

[13] V. Lazarus, J-B Leblond, S. E. Mouchrif, “Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part I. Calculation of stress intensity factors”, J. Mech. Phys. Solids, 49:7 (2001), 1399–1420 | DOI

[14] V. Lazarus, J-B. Leblond, S. E. Mouchrif, “Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part II. Comparison with experiments”, J. Mech. Phys. Solids, 49:7 (2001), 1421–1443 | DOI

[15] V. Lazarus, F. G. Buchholz, M. Fulland, J. Wiebesiek, “Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments”, Internat. J. Fracture, 153:2 (2008), 141–151 | DOI

[16] S. Cherny, V. Lapin, D. Esipov, D. Kuranakov, A. Avdyushenko, A. Lyutov, P. Karnakov, “Simulating fully 3D non-planar evolution of hydraulic fractures”, Internat. J. Fracture, 201:2 (2016), 181–211 | DOI

[17] O. P. Alekseenko, D. V. Esipov, D. S. Kuranakov, V. N. Lapin, S. G. Chernyi, “Dvumernaya poshagovaya model rasprostraneniya treschiny gidrorazryva”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:3 (2011), 36–59

[18] R. V. Goldstein, R. L. Salganik, “Brittle fracture of solids with arbitrary cracks”, Internat. J. Fracture, 10 (1974), 507–523 | DOI

[19] V. N. Lapin, S. G. Cherny, “An implicit criterion of fracture growth direction for 3D simulation of hydraulic fracture propagation”, Procedia Structural Integrity, 13 (2018), 1171–1176 | DOI

[20] D. Salimi-Majd, F. Shahabi, B. Mohammadi, “Effective local stress intensity factor criterion for prediction of crack growth trajectory under mixed mode fracture conditions”, Theor. Appl. Fracture Mech., 85 (2016), 207–216 | DOI