Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_4_a10, author = {I. V. Frankina}, title = {On the equilibrium of a two-layer elastic structure with a crack}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {107--120}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/} }
I. V. Frankina. On the equilibrium of a two-layer elastic structure with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 107-120. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/
[1] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[2] A. M. Khludnev, J. Sokolowski, Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl
[3] M. P. Savruk, V. S. Kravets, “Vliyanie podkreplyayuschikh nakladok na raspredelenie napryazhenii v plastinakh s treschinami”, Prikl. mekhanika, 29:3 (1993), 48–55 | MR
[4] A. Yu. Zemlyanova, V. V. Silvestrov, “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl
[5] Yu. O. Vasileva, V. V. Silvestrov, “Zadacha o mezhfaznoi treschine s zhestkoi nakladkoi na chasti ee berega”, Prikl. matematika i mekhanika, 2011, no. 6, 1017–1037 | Zbl
[6] A. M. Khludnev, G. R. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[7] A. Gaudiello, A. M. Khludnev, “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl
[8] E. V. Pyatkina, “Optimalnoe upravlenie razmerom sloya v zadache o ravnovesii uprugikh tel s nalegayuschimi oblastyami”, Sib. zhurn. industr. matematiki, 19:3 (2016), 75–84 | MR | Zbl
[9] E. M. Rudoi, N. A. Kazarinov, V. Yu. Slesarenko, “Chislennoe modelirovanie ravnovesiya dvukhsloinoi uprugoi konstruktsii so skvoznoi treschinoi”, Sib. zhurn. vychisl. matematiki, 20:1 (2017), 77–90 | MR
[10] A. M. Khludnev, “O ravnovesii dvusloinoi uprugoi konstruktsii s treschinoi”, Sib. zhurn. industr. matematiki, 16:2 (2013), 144–153 | Zbl
[11] L. Freddi, T. Roubicek, C. Zanini, “Quasistatic delamination of sandwich-like Kirchhoff-Love plates”, J. Elast., 113 (2013), 219–250 | DOI | MR | Zbl
[12] E. V. Pyatkina, “Kontaktnaya zadacha dlya dvukh plastin odinakovoi formy, skleennykh vdol odnogo berega treschiny”, Sib. zhurn. industr. matematiki, 21:2 (2018), 79–92 | MR | Zbl
[13] T. S. Popova, “Zadacha o kontakte dvukh vyazkouprugikh plastin”, Mat. zametki YaGU, 12:2 (2005), 60–92
[14] A. M. Khludnev, A. Tani, “Unilateral contact problems for two inclined elastic bodies”, Europ. J. Mech. A/Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl
[15] N. V. Neustroeva, “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl
[16] N. V. Neustroeva, “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl
[17] T. A. Rotanova, “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl
[18] V. D. Stepanov, A. M. Khludnev, “Metod fiktivnykh oblastei v zadache Sinorini”, Sib. mat. zhurn., 44:6 (2003), 1350–1364 | MR | Zbl
[19] T. S. Popova, “Metod fiktivnykh oblastei v zadache Sinorini dlya vyazkouprugikh tel”, Mat. zametki YaGU, 13:1 (2006), 105–121
[20] G. V. Alekseev, A. M. Khludnev, “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:2 (2009), 15–29 | Zbl
[21] N. P. Lazarev, “Metod fiktivnykh oblastei v zadache o ravnovesii plastiny Timoshenko, kontaktiruyuschei s zhestkim prepyatstviem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:1 (2013), 91–104 | Zbl
[22] N. A. Nikolaeva, “Metod fiktivnykh oblastei v zadache Sinorini o ravnovesii plastiny Kirkhgofa–Lyava”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 15:3 (2015), 78–90 | Zbl
[23] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991