On the equilibrium of a two-layer elastic structure with a crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 107-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is some problem concerning the equilibrium of a two-layer structure whose layers are some elastic plates. The upper layer is glued to the lower one along a part of the edge. The behavior of the plates is modelled in the framework of the plane theory of elasticity. Along the gluing line in the lower layer, there is a crack crossing the external boundary at zero angle. On the crack faces, the nonlinear boundary conditions are imposed that exclude their mutual penetration. The solvability of the equilibrium problem is considered as well as the behavior of the solution in the case when the elasticity moduli of upper plate tend to zero or to infinity.
Keywords: two-layer structure, crack, nonpenetration condition, fictitious domain method, variational inequality.
@article{SJIM_2019_22_4_a10,
     author = {I. V. Frankina},
     title = {On the equilibrium of a two-layer elastic structure with a crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/}
}
TY  - JOUR
AU  - I. V. Frankina
TI  - On the equilibrium of a two-layer elastic structure with a crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 107
EP  - 120
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/
LA  - ru
ID  - SJIM_2019_22_4_a10
ER  - 
%0 Journal Article
%A I. V. Frankina
%T On the equilibrium of a two-layer elastic structure with a crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 107-120
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/
%G ru
%F SJIM_2019_22_4_a10
I. V. Frankina. On the equilibrium of a two-layer elastic structure with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 107-120. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a10/

[1] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] A. M. Khludnev, J. Sokolowski, Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl

[3] M. P. Savruk, V. S. Kravets, “Vliyanie podkreplyayuschikh nakladok na raspredelenie napryazhenii v plastinakh s treschinami”, Prikl. mekhanika, 29:3 (1993), 48–55 | MR

[4] A. Yu. Zemlyanova, V. V. Silvestrov, “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl

[5] Yu. O. Vasileva, V. V. Silvestrov, “Zadacha o mezhfaznoi treschine s zhestkoi nakladkoi na chasti ee berega”, Prikl. matematika i mekhanika, 2011, no. 6, 1017–1037 | Zbl

[6] A. M. Khludnev, G. R. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl

[7] A. Gaudiello, A. M. Khludnev, “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl

[8] E. V. Pyatkina, “Optimalnoe upravlenie razmerom sloya v zadache o ravnovesii uprugikh tel s nalegayuschimi oblastyami”, Sib. zhurn. industr. matematiki, 19:3 (2016), 75–84 | MR | Zbl

[9] E. M. Rudoi, N. A. Kazarinov, V. Yu. Slesarenko, “Chislennoe modelirovanie ravnovesiya dvukhsloinoi uprugoi konstruktsii so skvoznoi treschinoi”, Sib. zhurn. vychisl. matematiki, 20:1 (2017), 77–90 | MR

[10] A. M. Khludnev, “O ravnovesii dvusloinoi uprugoi konstruktsii s treschinoi”, Sib. zhurn. industr. matematiki, 16:2 (2013), 144–153 | Zbl

[11] L. Freddi, T. Roubicek, C. Zanini, “Quasistatic delamination of sandwich-like Kirchhoff-Love plates”, J. Elast., 113 (2013), 219–250 | DOI | MR | Zbl

[12] E. V. Pyatkina, “Kontaktnaya zadacha dlya dvukh plastin odinakovoi formy, skleennykh vdol odnogo berega treschiny”, Sib. zhurn. industr. matematiki, 21:2 (2018), 79–92 | MR | Zbl

[13] T. S. Popova, “Zadacha o kontakte dvukh vyazkouprugikh plastin”, Mat. zametki YaGU, 12:2 (2005), 60–92

[14] A. M. Khludnev, A. Tani, “Unilateral contact problems for two inclined elastic bodies”, Europ. J. Mech. A/Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl

[15] N. V. Neustroeva, “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[16] N. V. Neustroeva, “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[17] T. A. Rotanova, “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl

[18] V. D. Stepanov, A. M. Khludnev, “Metod fiktivnykh oblastei v zadache Sinorini”, Sib. mat. zhurn., 44:6 (2003), 1350–1364 | MR | Zbl

[19] T. S. Popova, “Metod fiktivnykh oblastei v zadache Sinorini dlya vyazkouprugikh tel”, Mat. zametki YaGU, 13:1 (2006), 105–121

[20] G. V. Alekseev, A. M. Khludnev, “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:2 (2009), 15–29 | Zbl

[21] N. P. Lazarev, “Metod fiktivnykh oblastei v zadache o ravnovesii plastiny Timoshenko, kontaktiruyuschei s zhestkim prepyatstviem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:1 (2013), 91–104 | Zbl

[22] N. A. Nikolaeva, “Metod fiktivnykh oblastei v zadache Sinorini o ravnovesii plastiny Kirkhgofa–Lyava”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 15:3 (2015), 78–90 | Zbl

[23] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991