Structure of the phase portrait of a piecewise-linear dynamical system
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some piecewise linear $4$-dimensional dynamical system that models a gene network regulated by one negative feedback and three positive feedbacks. Glass and Pasternack described the conditions for the existence of a stable cycle in this model. We construct an invariant piecewise linear surface with nontrivial link with the Glass–Pasternack cycle outside the attraction domain of this stable cycle in the phase portrait of this system.
Keywords: block-linear dynamical systems, Poincaré mapping, gene network models, Hopf link.
Mots-clés : phase portraits, invariant surfaces, cycles
@article{SJIM_2019_22_4_a1,
     author = {N. B. Ayupova and V. P. Golubyatnikov},
     title = {Structure of the phase portrait of a piecewise-linear dynamical system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {19--25},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a1/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
TI  - Structure of the phase portrait of a piecewise-linear dynamical system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 19
EP  - 25
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a1/
LA  - ru
ID  - SJIM_2019_22_4_a1
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%T Structure of the phase portrait of a piecewise-linear dynamical system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 19-25
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a1/
%G ru
%F SJIM_2019_22_4_a1
N. B. Ayupova; V. P. Golubyatnikov. Structure of the phase portrait of a piecewise-linear dynamical system. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 19-25. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a1/

[1] A. A. Akinshin, V. P. Golubyatnikov, I. V. Golubyatnikov, “O nekotorykh mnogomernykh modelyakh funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 16:1 (2013), 3–9 | MR | Zbl

[2] N. B. Ayupova, V. P. Golubyatnikov, “O edinstvennosti tsikla v trekhmernoi modeli molekulyarnogo repressilyatora”, Sib. zhurn. industr. matematiki, 17:1 (2014), 3–7 | MR | Zbl

[3] N. B. Ayupova, V. P. Golubyatnikov, “O dvukh klassakh nelineinykh dinamicheskikh sistem. Chetyrekhmernyi sluchai”, Sib. mat. zhurn., 56:2 (2015), 282–289 | MR | Zbl

[4] M. V. Kazantsev, “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–49 | MR

[5] H. T. Banks, J. M. Mahaffy, “Stability of cyclic gene models for systems involving repression”, J. Theor. Biol., 74 (1978), 323–334 | DOI | MR

[6] L. Glass, J. S. Pasternack, “Stable oscillations in mathematical models of biological control systems”, J. Math. Biol., 6 (1978), 207–223 | DOI | MR | Zbl

[7] V. A. Likhoshvai, S. I. Fadeev, V. V. Kogai, T. M. Khlebodarova, “Alternative splicing can lead to chaos”, J. Bioinform. Comput. Biol., 13:1 (2015), 1540003-1–1540003-25 | DOI

[8] S. P. Hastings, J. Tyson, D. Webster, “Existence of periodic solutions for negative feedback cellular control systems”, J. Differential Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[9] V. P. Golubyatnikov, A. E. Kalenykh, “O stroenii fazovykh portretov nekotorykh nelineinykh dinamicheskikh sistem”, Sib. zhurn. chistoi i prikl. matematiki, 15:1 (2015), 45–53 | Zbl

[10] V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost i ustoichivost tsikla v trekhmernykh blochno-lineinykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 19–28 | Zbl

[11] S. Tabachnikov, Geometriya i billiardy, izd. Izhevsk. in-ta kompyut. issledovanii, M.–Izhevsk, 2011

[12] V. P. Golubyatnikov, M. V. Kazantsev, “Obodnoi kusochno-lineinoi dinamicheskoi sisteme, modeliruyuschei gennuyu set s peremennoi obratnoi svyazyu”, Sib. zhurn. chistoi i prikl. matematiki, 16:4 (2016), 28–37 | Zbl

[13] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[14] V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2010 | DOI | MR | Zbl