The Duhamel method in the inverse problems for hyperbolic equations. II
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the identification problem for a time-dependent source in the wave equation. The Dirichlet conditions are used as the boundary conditions, whereas the weighted integral of the conormal derivative of the solution over the boundary of the spatial domain serves as the overdetermination condition. Using the Duhamel method, the problem is reduced to the Volterra integral equation of the first and then the second kind. These results are applied to studying nonlinear coefficient problems. The existence and uniqueness of a local solution is proved by the contraction mapping principle.
Keywords: inverse problem, wave equation, integral condition.
@article{SJIM_2019_22_4_a0,
     author = {A. N. Artyushin},
     title = {The {Duhamel} method in the inverse problems for hyperbolic equations. {II}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a0/}
}
TY  - JOUR
AU  - A. N. Artyushin
TI  - The Duhamel method in the inverse problems for hyperbolic equations. II
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 3
EP  - 18
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a0/
LA  - ru
ID  - SJIM_2019_22_4_a0
ER  - 
%0 Journal Article
%A A. N. Artyushin
%T The Duhamel method in the inverse problems for hyperbolic equations. II
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 3-18
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a0/
%G ru
%F SJIM_2019_22_4_a0
A. N. Artyushin. The Duhamel method in the inverse problems for hyperbolic equations. II. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a0/

[1] A. N. Artyushin, “Metod Dyuamelya v obratnykh zadachakh dlya volnovogo uravneniya. I”, Sib. zhurn. chistoi i prikl. matematiki, 18:2 (2018), 30–46 | MR | Zbl

[2] H. Egger, T. Kugler, N. Strogies, “Parameter indentification in a semilinear hyperbolic system”, Inverse Problems, 33:5 (2017), 055022 | DOI | MR | Zbl

[3] A. I. Kozhanov, “O razreshimosti nekotorykh nelokalnykh i svyazannykh s nimi obratnykh zadach dlya parabolicheskikh uravnenii”, Mat. zametki Yakutsk. gos. un-ta, 18:2 (2011), 64–78 | Zbl

[4] A. I. Prilepko, D. G. Orlovskii, “Ob opredelenii parametra evolyutsionnogo uravneniya i obratnykh zadachakh matematicheskoi fiziki. III”, Differents. uravneniya, 23:8 (1987), 1343–1353 | MR | Zbl

[5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[6] L. R. Volevich, S. G. Gindikin, Smeshannaya zadacha dlya differentsialnykh uravnenii v chastnykh proizvodnykh s kvaziodnorodnoi starshei chastyu, Editorial URSS, M., 1999