A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 104-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical method for solving an exterior three-dimensional boundary value problem for the Laplace equation based on the overlapping decomposition of the computational domain. The initial boundary value problem is reduced to solving an operator equation for the sought values of the function on an auxiliary sphere enclosing the interior boundary. This equation is approximated by a system of linear algebraic equations which is solved by iterative methods in the Krylov subspaces. A series of numerical experiments for model problems with known solutions demonstrates not only the convergence of the method and the attained accuracy of the calculations but also a sufficiently short runtime.
Keywords: exterior boundary value problem, overlapping domain decomposition, operator equation on a sphere, Krylov subspace.
Mots-clés : Laplace equation
@article{SJIM_2019_22_3_a8,
     author = {A. O. Savchenko and A. V. Petukhov},
     title = {A method for solving an exterior boundary value problem for the {Laplace} equation by overlapping domain decomposition},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {104--113},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/}
}
TY  - JOUR
AU  - A. O. Savchenko
AU  - A. V. Petukhov
TI  - A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 104
EP  - 113
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/
LA  - ru
ID  - SJIM_2019_22_3_a8
ER  - 
%0 Journal Article
%A A. O. Savchenko
%A A. V. Petukhov
%T A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 104-113
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/
%G ru
%F SJIM_2019_22_3_a8
A. O. Savchenko; A. V. Petukhov. A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 104-113. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/

[1] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevior, Amsterdam, 1992 | MR | Zbl

[2] Yu De-hao, Natural Boundary Integral Method and Its Applications, Springer-Verl., Dordrecht, 2002 | MR

[3] T. Gillis, G. Winckelmans, P. Chatelain, “Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries”, J. Comput. Phys., 354 (2018), 403–416 | DOI | MR | Zbl

[4] Q. Chen, B. Liu, Q. Du, “A D-N alternating algorithm for solving 3D exterior Helmholtz problems”, Math. Probl. Engrg., 2014 (2014) | DOI | MR

[5] C. Farhat, A. Macedo, M. Lesoinne, “A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems”, Numer. Math., 85:2 (2000), 283–308 | DOI | MR | Zbl

[6] Du Qikui, Yu De-hao, “Schwarz alternating method based on natural boundary reduction for time-dependent problems on unbounded domains”, Comm. Numer. Meth. Engrg., 20 (2004), 363–378 | DOI | MR | Zbl

[7] Yu De-hao, Wu Ji-ming, “A nonoverlapping domain decomposition method for exterior 3D problem”, J. Comput. Math., 19:1 (2001), 77–86 | MR

[8] V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “Chislennoe reshenie trekhmernykh vneshnikh kraevykh zadach dlya uravneniya Laplasa metodom dekompozitsii raschetnoi oblasti bez peresecheniya”, Sib. zhurn. vychisl. matematiki, 21:4 (2018), 423–436

[9] H. A. Schwarz, “Uber einige Abbildungsaufgaben”, Ges. Math. Abh., v. II, 1869, 65–83 | MR

[10] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 2, Izd-vo inostr. lit., M., 1951

[11] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, Nauka, M., 1962 | MR

[12] A. O. Savchenko, V. P. Ilin, D. S. Butyugin, “Metod resheniya vneshnei kraevoi zadachi dlya uravneniya Laplasa”, Sib. zhurn. industr. matematiki, 19:2 (66) (2016), 88–99 | MR | Zbl

[13] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1962

[14] V. P. Ilin, Metody i tekhnologii konechnykh elementov, Izd. IVMiMG (VTs) SO RAN, Novosibirsk, 2007