Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_3_a8, author = {A. O. Savchenko and A. V. Petukhov}, title = {A method for solving an exterior boundary value problem for the {Laplace} equation by overlapping domain decomposition}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {104--113}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/} }
TY - JOUR AU - A. O. Savchenko AU - A. V. Petukhov TI - A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 104 EP - 113 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/ LA - ru ID - SJIM_2019_22_3_a8 ER -
%0 Journal Article %A A. O. Savchenko %A A. V. Petukhov %T A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 104-113 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/ %G ru %F SJIM_2019_22_3_a8
A. O. Savchenko; A. V. Petukhov. A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 104-113. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a8/
[1] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevior, Amsterdam, 1992 | MR | Zbl
[2] Yu De-hao, Natural Boundary Integral Method and Its Applications, Springer-Verl., Dordrecht, 2002 | MR
[3] T. Gillis, G. Winckelmans, P. Chatelain, “Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries”, J. Comput. Phys., 354 (2018), 403–416 | DOI | MR | Zbl
[4] Q. Chen, B. Liu, Q. Du, “A D-N alternating algorithm for solving 3D exterior Helmholtz problems”, Math. Probl. Engrg., 2014 (2014) | DOI | MR
[5] C. Farhat, A. Macedo, M. Lesoinne, “A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems”, Numer. Math., 85:2 (2000), 283–308 | DOI | MR | Zbl
[6] Du Qikui, Yu De-hao, “Schwarz alternating method based on natural boundary reduction for time-dependent problems on unbounded domains”, Comm. Numer. Meth. Engrg., 20 (2004), 363–378 | DOI | MR | Zbl
[7] Yu De-hao, Wu Ji-ming, “A nonoverlapping domain decomposition method for exterior 3D problem”, J. Comput. Math., 19:1 (2001), 77–86 | MR
[8] V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “Chislennoe reshenie trekhmernykh vneshnikh kraevykh zadach dlya uravneniya Laplasa metodom dekompozitsii raschetnoi oblasti bez peresecheniya”, Sib. zhurn. vychisl. matematiki, 21:4 (2018), 423–436
[9] H. A. Schwarz, “Uber einige Abbildungsaufgaben”, Ges. Math. Abh., v. II, 1869, 65–83 | MR
[10] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 2, Izd-vo inostr. lit., M., 1951
[11] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, Nauka, M., 1962 | MR
[12] A. O. Savchenko, V. P. Ilin, D. S. Butyugin, “Metod resheniya vneshnei kraevoi zadachi dlya uravneniya Laplasa”, Sib. zhurn. industr. matematiki, 19:2 (66) (2016), 88–99 | MR | Zbl
[13] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1962
[14] V. P. Ilin, Metody i tekhnologii konechnykh elementov, Izd. IVMiMG (VTs) SO RAN, Novosibirsk, 2007