Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_3_a6, author = {S. G. Kazantsev and V. B. Kardakov}, title = {Poloidal-toroidal decomposition of solenoidal vector fields in the ball}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {74--95}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/} }
TY - JOUR AU - S. G. Kazantsev AU - V. B. Kardakov TI - Poloidal-toroidal decomposition of solenoidal vector fields in the ball JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 74 EP - 95 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/ LA - ru ID - SJIM_2019_22_3_a6 ER -
S. G. Kazantsev; V. B. Kardakov. Poloidal-toroidal decomposition of solenoidal vector fields in the ball. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 74-95. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/
[1] E. Yu. Derevtsov, S. G. Kazantsev, Th. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Inverse Ill-Posed Problem, 15:1 (2007), 19–55 | DOI | MR | Zbl
[2] G. E. Backus, “Poloidal and toroidal fields in geomagnetic field modeling”, Rev. Geophys., 24 (1986), 75–109 | DOI | MR
[3] Backus G, R. Parker, C. Constable, Foundations of Geomagnetism, Univ. Press, Cambridge, 1996
[4] V. M. Bykov, “Techeniya Stoksa v share”, Prikl. mekhanika i tekhn. fizika, 1980, no. 2, 65–70
[5] B. Rummler, “The eigenfunctions of the Stokes operator in the open unit ball and in the open spherical annulus”, 8 Asian Computational Fluid Dynamics Conf. (Hong Kong, 10–14 January, 2010), ACFD0163-T001-A-001-3
[6] G. M. Vodinchar, L. K. Kruteva, “Bazisnye sistemy dlya geomagnitnogo polya”, Vestn. KRAUNTs. Fiz. mat. nauki, 2010, no. 1(1), 24–30 | Zbl
[7] P. H. Roberts, E. King, “On the genesis of the Earth's magnetism”, Reports on Progress in Physics, 76:9 (2013), 096801 | DOI
[8] G. Veil, Metod ortogonalnoi proektsii v teorii potentsiala, Nauka, M., 1984
[9] G. Auchmuty, “Orthogonal decompositions and bases for three-dimensional vector fields”, Numer. Funct. Anal. Optim., 15:5–6 (1994), 455–488 | DOI | MR | Zbl
[10] H. Kozono, T. Yanagisawa, “$L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains”, Indiana Univ. Math. J., 58:4 (2009), 1853–1920 | DOI | MR | Zbl
[11] Ch. J. Amick, “Decomposition theorems for solenoidal vector fields”, J. Lond. Math. Soc., 1977, no. 2, 288–296 | DOI | MR | Zbl
[12] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verl., Berlin, 1986 | MR | Zbl
[13] K. Atkinson, H. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Mathematics, 2044, Springer-Verl., Berlin–Heidelberg, 2012 | DOI | MR | Zbl
[14] C. Muller, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer-Verl., Berlin–Heidelberg, 1966 | DOI | MR | Zbl
[15] W. Freeden, M. Schreiner, Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup, Springer-Verl., Berlin, 2009 | Zbl
[16] VarshalovichD. A., A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975
[17] J. C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 144, Springer-Verl, N.Y., 2001 | DOI | MR | Zbl
[18] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[19] D. J. Ivers, “Kinematic dynamos in spheroidal geometries”, Proc. Roy. Soc., A473 (2017), 20170432 | DOI | MR | Zbl
[20] G. Moffat, Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980