Poloidal-toroidal decomposition of solenoidal vector fields in the ball
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 74-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the polynomial orthogonal basis system of vector fields in the ball which corresponds to the Helmholtz decomposition and is divided into the three parts: potential, harmonic, and solenoidal. It is shown that the decomposition of a solenoidal vector field with respect to this basis is a poloidal-toroidal decomposition (the Mie representation). In this case, the toroidal potentials are Zernike polynomials, whereas the poloidal potentials are generalized Zernike polynomials. The polynomial system of toroidal and poloidal vector fields in a ball can be used for solving practical problems, in particular, to represent the geomagnetic field in the Earth's core.
Keywords: solenoidal, toroidal and poloidal vector fields, Mie representation, vector spherical harmonic, Zernike polynomial.
@article{SJIM_2019_22_3_a6,
     author = {S. G. Kazantsev and V. B. Kardakov},
     title = {Poloidal-toroidal decomposition of solenoidal vector fields in the ball},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {74--95},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/}
}
TY  - JOUR
AU  - S. G. Kazantsev
AU  - V. B. Kardakov
TI  - Poloidal-toroidal decomposition of solenoidal vector fields in the ball
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 74
EP  - 95
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/
LA  - ru
ID  - SJIM_2019_22_3_a6
ER  - 
%0 Journal Article
%A S. G. Kazantsev
%A V. B. Kardakov
%T Poloidal-toroidal decomposition of solenoidal vector fields in the ball
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 74-95
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/
%G ru
%F SJIM_2019_22_3_a6
S. G. Kazantsev; V. B. Kardakov. Poloidal-toroidal decomposition of solenoidal vector fields in the ball. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 74-95. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a6/

[1] E. Yu. Derevtsov, S. G. Kazantsev, Th. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Inverse Ill-Posed Problem, 15:1 (2007), 19–55 | DOI | MR | Zbl

[2] G. E. Backus, “Poloidal and toroidal fields in geomagnetic field modeling”, Rev. Geophys., 24 (1986), 75–109 | DOI | MR

[3] Backus G, R. Parker, C. Constable, Foundations of Geomagnetism, Univ. Press, Cambridge, 1996

[4] V. M. Bykov, “Techeniya Stoksa v share”, Prikl. mekhanika i tekhn. fizika, 1980, no. 2, 65–70

[5] B. Rummler, “The eigenfunctions of the Stokes operator in the open unit ball and in the open spherical annulus”, 8 Asian Computational Fluid Dynamics Conf. (Hong Kong, 10–14 January, 2010), ACFD0163-T001-A-001-3

[6] G. M. Vodinchar, L. K. Kruteva, “Bazisnye sistemy dlya geomagnitnogo polya”, Vestn. KRAUNTs. Fiz. mat. nauki, 2010, no. 1(1), 24–30 | Zbl

[7] P. H. Roberts, E. King, “On the genesis of the Earth's magnetism”, Reports on Progress in Physics, 76:9 (2013), 096801 | DOI

[8] G. Veil, Metod ortogonalnoi proektsii v teorii potentsiala, Nauka, M., 1984

[9] G. Auchmuty, “Orthogonal decompositions and bases for three-dimensional vector fields”, Numer. Funct. Anal. Optim., 15:5–6 (1994), 455–488 | DOI | MR | Zbl

[10] H. Kozono, T. Yanagisawa, “$L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains”, Indiana Univ. Math. J., 58:4 (2009), 1853–1920 | DOI | MR | Zbl

[11] Ch. J. Amick, “Decomposition theorems for solenoidal vector fields”, J. Lond. Math. Soc., 1977, no. 2, 288–296 | DOI | MR | Zbl

[12] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verl., Berlin, 1986 | MR | Zbl

[13] K. Atkinson, H. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Mathematics, 2044, Springer-Verl., Berlin–Heidelberg, 2012 | DOI | MR | Zbl

[14] C. Muller, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer-Verl., Berlin–Heidelberg, 1966 | DOI | MR | Zbl

[15] W. Freeden, M. Schreiner, Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup, Springer-Verl., Berlin, 2009 | Zbl

[16] VarshalovichD. A., A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[17] J. C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 144, Springer-Verl, N.Y., 2001 | DOI | MR | Zbl

[18] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[19] D. J. Ivers, “Kinematic dynamos in spheroidal geometries”, Proc. Roy. Soc., A473 (2017), 20170432 | DOI | MR | Zbl

[20] G. Moffat, Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980