A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of equations of electrodynamics is considered for a nonmagnetic nonconducting medium. For this system, the problem is under study of determining the permittivity $\varepsilon$ from the given modulus of the electric intensity vector of the electromagnetic field that is the result of the interference of the two fields generated by some point sources of an extraneous current. It is assumed that permittivity is different from a given positive constant $\varepsilon_0$ only inside a compact domain $\Omega_0\subset\mathbb{R}^3$, whereas the modulus of the electric field intensity vector is given for all frequencies starting from a fixed frequency $\omega_0$ on the boundary $S$ of some domain $\Omega$ that includes $\Omega_0$. It is shown that this information allows us to reduce the original problem to the well-known inverse kinematic problem of determining the refraction index inside $\Omega$ by the travel time of the electromagnetic wave between the points of the boundary of this domain. The algorithm for numerical solution of the inverse problem is constructed, and the test calculations on the simulated data are presented.
Keywords: inverse phaseless problem, Maxwell equations, numerical algorithm, inverse kinematic problem.
@article{SJIM_2019_22_3_a4,
     author = {V. A. Dedok and A. L. Karchevsky and V. G. Romanov},
     title = {A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/}
}
TY  - JOUR
AU  - V. A. Dedok
AU  - A. L. Karchevsky
AU  - V. G. Romanov
TI  - A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 48
EP  - 58
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/
LA  - ru
ID  - SJIM_2019_22_3_a4
ER  - 
%0 Journal Article
%A V. A. Dedok
%A A. L. Karchevsky
%A V. G. Romanov
%T A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 48-58
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/
%G ru
%F SJIM_2019_22_3_a4
V. A. Dedok; A. L. Karchevsky; V. G. Romanov. A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 48-58. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/

[1] B. R. Vainberg, “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ nestatsionarnykh zadach”, Uspekhi mat. nauk, 30:2 (182) (1975), 3–55 | MR

[2] M. V. Klibanov, V. G. Romanov, “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation”, J. Inverse Ill-Posed Probl., 23:4 (2015), 415–428 | DOI | MR | Zbl

[3] M. V. Klibanov, V. G. Romanov, “Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: the plane wave case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 48–63 | MR

[4] R. G. Novikov, “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions”, J. Geom. Anal., 2015 | DOI | MR

[5] R. G. Novikov, “Formulas for phase recovering from phaseless scattering data at fixed frequency”, Bull. Sci. Math., 2015 | DOI | MR

[6] M. V. Klibanov, V. G. Romanov, “Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nanostructures”, J. Inverse Ill-Posed Probl., 23:2 (2015), 187–193 | DOI | MR | Zbl

[7] V. G. Romanov, “Some geometric aspects in inverse problems”, Eurasian J. Math. Comput. Appl., 3:4 (2015), 68–84

[8] M. V. Klibanov, V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl

[9] M. V. Klibanov, V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:2 (2016), 015005 | DOI | MR | Zbl

[10] V. G. Romanov, M. Yamamoto, “Phaseless inverse problems with interference waves”, J. Inverse Ill-Posed Probl., 26:5 (2018), 681–688 | DOI | MR | Zbl

[11] V. G. Romanov, M. Yamamoto, “Recovering two coefficients in an elliptic equation via phaseless information”, Inverse Probl. Imaging., 13:1 (2019), 81–91 | DOI | MR | Zbl

[12] V. G. Romanov, “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektromagnitnogo polya”, Sib. mat. zhurn., 58:4 (2017), 916–924 | MR | Zbl

[13] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638 | MR | Zbl

[14] V. G. Romanov, “Opredelenie dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti vysokochastotnogo elektromagnitnogo polya”, Dokl. AN, 484:3 (2019), 269–272 | DOI | Zbl

[15] A. L. Karchevskii, V. A. Dedok, “Vosstanovlenie koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektricheskogo polya”, Sib. zhurn. industr. matematiki, 21:3 (2018), 50–59 | DOI | Zbl

[16] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[17] R. G. Mukhometov, “Zadacha vosstanovleniya dvumernoi rimanovoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl

[18] R. G. Mukhometov, V. G. Romanov, “K zadache otyskaniya izotropnoi rimanovoi metriki v $n$-mernom prostranstve”, Dokl. AN SSSR, 243:1 (1978), 41–44 | MR | Zbl

[19] I. N. Bernshtein, M. L. Gerver, “O zadache integralnoi geometrii dlya semeistva geodezicheskikh i ob obratnoi kinematicheskoi zadache seismiki”, Dokl. AN SSSR, 243:2 (1978), 302–305 | MR

[20] Beilkin G. Ya., “Ustoichivost i edinstvennost resheniya obratnoi kinematicheskoi zadachi seismiki v mnogomernom sluchae”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Nauka, L., 1979, 3–6 | MR

[21] Alekseev A. S., Lavrentev M. M., Mukhometov R. G. i dr., “Chislennyi metod resheniya trekhmernoi obratnoi kinematicheskoi zadachi seismiki”, Matematicheskie problemy geofiziki, 1971, no. 2, 143–165

[22] Alekseev A. S., Belonosova A. V. et al., “Seismic studies of low-velocity layers and horizontal inhomogeneitics within the crust and upper mantle on the territory of the USSR”, Tectonophysics, 20 (1973), 47–56 | DOI

[23] Daubechies I., Grossmann A., Meyer Y. J., “Painless nonorthogonal expansions”, J. Math. Phys., 27:5, 1271–1283 | DOI | MR | Zbl