Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_3_a4, author = {V. A. Dedok and A. L. Karchevsky and V. G. Romanov}, title = {A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {48--58}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/} }
TY - JOUR AU - V. A. Dedok AU - A. L. Karchevsky AU - V. G. Romanov TI - A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 48 EP - 58 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/ LA - ru ID - SJIM_2019_22_3_a4 ER -
%0 Journal Article %A V. A. Dedok %A A. L. Karchevsky %A V. G. Romanov %T A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 48-58 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/ %G ru %F SJIM_2019_22_3_a4
V. A. Dedok; A. L. Karchevsky; V. G. Romanov. A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 48-58. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a4/
[1] B. R. Vainberg, “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ nestatsionarnykh zadach”, Uspekhi mat. nauk, 30:2 (182) (1975), 3–55 | MR
[2] M. V. Klibanov, V. G. Romanov, “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation”, J. Inverse Ill-Posed Probl., 23:4 (2015), 415–428 | DOI | MR | Zbl
[3] M. V. Klibanov, V. G. Romanov, “Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: the plane wave case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 48–63 | MR
[4] R. G. Novikov, “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions”, J. Geom. Anal., 2015 | DOI | MR
[5] R. G. Novikov, “Formulas for phase recovering from phaseless scattering data at fixed frequency”, Bull. Sci. Math., 2015 | DOI | MR
[6] M. V. Klibanov, V. G. Romanov, “Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nanostructures”, J. Inverse Ill-Posed Probl., 23:2 (2015), 187–193 | DOI | MR | Zbl
[7] V. G. Romanov, “Some geometric aspects in inverse problems”, Eurasian J. Math. Comput. Appl., 3:4 (2015), 68–84
[8] M. V. Klibanov, V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl
[9] M. V. Klibanov, V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:2 (2016), 015005 | DOI | MR | Zbl
[10] V. G. Romanov, M. Yamamoto, “Phaseless inverse problems with interference waves”, J. Inverse Ill-Posed Probl., 26:5 (2018), 681–688 | DOI | MR | Zbl
[11] V. G. Romanov, M. Yamamoto, “Recovering two coefficients in an elliptic equation via phaseless information”, Inverse Probl. Imaging., 13:1 (2019), 81–91 | DOI | MR | Zbl
[12] V. G. Romanov, “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektromagnitnogo polya”, Sib. mat. zhurn., 58:4 (2017), 916–924 | MR | Zbl
[13] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638 | MR | Zbl
[14] V. G. Romanov, “Opredelenie dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti vysokochastotnogo elektromagnitnogo polya”, Dokl. AN, 484:3 (2019), 269–272 | DOI | Zbl
[15] A. L. Karchevskii, V. A. Dedok, “Vosstanovlenie koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektricheskogo polya”, Sib. zhurn. industr. matematiki, 21:3 (2018), 50–59 | DOI | Zbl
[16] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984
[17] R. G. Mukhometov, “Zadacha vosstanovleniya dvumernoi rimanovoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl
[18] R. G. Mukhometov, V. G. Romanov, “K zadache otyskaniya izotropnoi rimanovoi metriki v $n$-mernom prostranstve”, Dokl. AN SSSR, 243:1 (1978), 41–44 | MR | Zbl
[19] I. N. Bernshtein, M. L. Gerver, “O zadache integralnoi geometrii dlya semeistva geodezicheskikh i ob obratnoi kinematicheskoi zadache seismiki”, Dokl. AN SSSR, 243:2 (1978), 302–305 | MR
[20] Beilkin G. Ya., “Ustoichivost i edinstvennost resheniya obratnoi kinematicheskoi zadachi seismiki v mnogomernom sluchae”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Nauka, L., 1979, 3–6 | MR
[21] Alekseev A. S., Lavrentev M. M., Mukhometov R. G. i dr., “Chislennyi metod resheniya trekhmernoi obratnoi kinematicheskoi zadachi seismiki”, Matematicheskie problemy geofiziki, 1971, no. 2, 143–165
[22] Alekseev A. S., Belonosova A. V. et al., “Seismic studies of low-velocity layers and horizontal inhomogeneitics within the crust and upper mantle on the territory of the USSR”, Tectonophysics, 20 (1973), 47–56 | DOI
[23] Daubechies I., Grossmann A., Meyer Y. J., “Painless nonorthogonal expansions”, J. Math. Phys., 27:5, 1271–1283 | DOI | MR | Zbl