A contact problem for a plate and a beam in presence of adhesion
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 105-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of contact between a plate and a beam. It is assumed that no mutual penetration between the plate and the beam can occur, and so an appropriate nonpenetration condition is used. On the other hand, the adhesion of the bodies is taken into account which is characterized by a numerical adhesion parameter. We study the existence and uniqueness of a solution for the contact problem as well as the passage to the limit with respect to the adhesion parameter. The accompanying optimal control problem is investigated in which the adhesion parameter acts as a control parameter.
Keywords: contact, plate, beam, thin obstacle, nonpenetration condition, defect, adhesion, minimization problem, variational inequality, optimal control.
@article{SJIM_2019_22_2_a9,
     author = {A. I. Furtsev},
     title = {A contact problem for a plate and a beam in presence of adhesion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/}
}
TY  - JOUR
AU  - A. I. Furtsev
TI  - A contact problem for a plate and a beam in presence of adhesion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 105
EP  - 117
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/
LA  - ru
ID  - SJIM_2019_22_2_a9
ER  - 
%0 Journal Article
%A A. I. Furtsev
%T A contact problem for a plate and a beam in presence of adhesion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 105-117
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/
%G ru
%F SJIM_2019_22_2_a9
A. I. Furtsev. A contact problem for a plate and a beam in presence of adhesion. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 105-117. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/

[1] Caffarelli L. A., “Further regularity for the Signorini problem”, Commun. Part. Diff. Eq., 4:9 (1979), 1067–1075 | DOI | MR | Zbl

[2] Athanasopoulos I., Caffarelli L. A., “Optimal regularity of lower-dimensional obstacle problems”, J. Math. Sci., 132:3 (2006), 274–284 | DOI | MR

[3] Petrosyan A., Shahgholian H., Uraltseva N. N., Regularity of Free Boundaries in ObstacleType Problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, 2012 | DOI | MR

[4] Caffarelli L. A., Friedman A., “The obstacle problem for the biharmonic operator”, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser., 6:1 (1979), 151–184 | MR | Zbl

[5] Caffarelli L. A., Friedman A., Torelli A., “The two-obstacle problem for the biharmonic operator”, Pacific J. Math., 103:3 (1982), 325–335 | DOI | MR | Zbl

[6] Schild B., “On the coincidence set in biharmonic variational inequalities with thin obstacles”, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser., 13:4 (1986), 559–616 | MR | Zbl

[7] Dal Maso G., Paderni G., “Variational inequalities for the biharmonic operator with varying obstacles”, Ann. Mat. Pura Appl., 153:1 (1988), 203–227 | DOI | MR | Zbl

[8] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verl., Basel–Boston–Berlin, 1997 | MR | Zbl

[9] Khludnev A. M., “On unilateral contact of two plates aligned an angle to each other”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 553–567 | DOI | MR | Zbl

[10] Khludnev A. M., Leugering G., “Unilateral contact problems for two perpendicular elastic structures”, Z. Anal. Anwend., 27:2 (2008), 157–177 | DOI | MR | Zbl

[11] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | Zbl

[12] Rotanova T. A., “Unilateral contact problem for two plates with a rigid inclusion in the lower plate”, J. Math. Sci., 188:4. (2013), 452–462 | DOI | MR | Zbl

[13] Khludnev A. M., Khoffmann K.-Kh., Botkin N. D., “Variatsionnaya zadacha o kontakte uprugikh ob'ektov raznykh razmernostei”, Sib. mat. zhurn., 47:3 (2006), 707–717

[14] Khludnev A. M., Tani A., “Unilateral contact problem for two inclined elastic bodies”, Eur. J. Mech. A Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl

[15] Furtsev A. I., “O kontakte tonkogo prepyatstviya i plastiny, soderzhaschei tonkoe vklyuchenie”, Sib. zhurn. chistoi i prikl. matematiki, 17:4 (2017), 94–111

[16] Furtsev A. I., “Differentsirovanie funktsionala energii po dline otsloeniya v zadache o kontakte plastiny i balki”, Sib. elektron. mat. izvestiya, 15 (2018), 935–949 http://semr.math.nsc.ru | Zbl

[17] Khludnev A. M., “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 2018 | DOI | MR

[18] Khludnev A. M., “On modeling elastic bodies with defects”, Sib. elektron. mat. izvestiya, 15 (2018), 153–166 http://semr.math.nsc.ru | MR | Zbl