Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_2_a9, author = {A. I. Furtsev}, title = {A contact problem for a plate and a beam in presence of adhesion}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {105--117}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/} }
A. I. Furtsev. A contact problem for a plate and a beam in presence of adhesion. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 105-117. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/
[1] Caffarelli L. A., “Further regularity for the Signorini problem”, Commun. Part. Diff. Eq., 4:9 (1979), 1067–1075 | DOI | MR | Zbl
[2] Athanasopoulos I., Caffarelli L. A., “Optimal regularity of lower-dimensional obstacle problems”, J. Math. Sci., 132:3 (2006), 274–284 | DOI | MR
[3] Petrosyan A., Shahgholian H., Uraltseva N. N., Regularity of Free Boundaries in ObstacleType Problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, 2012 | DOI | MR
[4] Caffarelli L. A., Friedman A., “The obstacle problem for the biharmonic operator”, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser., 6:1 (1979), 151–184 | MR | Zbl
[5] Caffarelli L. A., Friedman A., Torelli A., “The two-obstacle problem for the biharmonic operator”, Pacific J. Math., 103:3 (1982), 325–335 | DOI | MR | Zbl
[6] Schild B., “On the coincidence set in biharmonic variational inequalities with thin obstacles”, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser., 13:4 (1986), 559–616 | MR | Zbl
[7] Dal Maso G., Paderni G., “Variational inequalities for the biharmonic operator with varying obstacles”, Ann. Mat. Pura Appl., 153:1 (1988), 203–227 | DOI | MR | Zbl
[8] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verl., Basel–Boston–Berlin, 1997 | MR | Zbl
[9] Khludnev A. M., “On unilateral contact of two plates aligned an angle to each other”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 553–567 | DOI | MR | Zbl
[10] Khludnev A. M., Leugering G., “Unilateral contact problems for two perpendicular elastic structures”, Z. Anal. Anwend., 27:2 (2008), 157–177 | DOI | MR | Zbl
[11] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | Zbl
[12] Rotanova T. A., “Unilateral contact problem for two plates with a rigid inclusion in the lower plate”, J. Math. Sci., 188:4. (2013), 452–462 | DOI | MR | Zbl
[13] Khludnev A. M., Khoffmann K.-Kh., Botkin N. D., “Variatsionnaya zadacha o kontakte uprugikh ob'ektov raznykh razmernostei”, Sib. mat. zhurn., 47:3 (2006), 707–717
[14] Khludnev A. M., Tani A., “Unilateral contact problem for two inclined elastic bodies”, Eur. J. Mech. A Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl
[15] Furtsev A. I., “O kontakte tonkogo prepyatstviya i plastiny, soderzhaschei tonkoe vklyuchenie”, Sib. zhurn. chistoi i prikl. matematiki, 17:4 (2017), 94–111
[16] Furtsev A. I., “Differentsirovanie funktsionala energii po dline otsloeniya v zadache o kontakte plastiny i balki”, Sib. elektron. mat. izvestiya, 15 (2018), 935–949 http://semr.math.nsc.ru | Zbl
[17] Khludnev A. M., “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 2018 | DOI | MR
[18] Khludnev A. M., “On modeling elastic bodies with defects”, Sib. elektron. mat. izvestiya, 15 (2018), 153–166 http://semr.math.nsc.ru | MR | Zbl