A contact problem for a plate and a beam in presence of adhesion
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of contact between a plate and a beam. It is assumed that no mutual penetration between the plate and the beam can occur, and so an appropriate nonpenetration condition is used. On the other hand, the adhesion of the bodies is taken into account which is characterized by a numerical adhesion parameter. We study the existence and uniqueness of a solution for the contact problem as well as the passage to the limit with respect to the adhesion parameter. The accompanying optimal control problem is investigated in which the adhesion parameter acts as a control parameter.
Keywords: contact, plate, beam, thin obstacle, nonpenetration condition, defect, adhesion, minimization problem, variational inequality, optimal control.
@article{SJIM_2019_22_2_a9,
     author = {A. I. Furtsev},
     title = {A contact problem for a plate and a beam in presence of adhesion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/}
}
TY  - JOUR
AU  - A. I. Furtsev
TI  - A contact problem for a plate and a beam in presence of adhesion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 105
EP  - 117
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/
LA  - ru
ID  - SJIM_2019_22_2_a9
ER  - 
%0 Journal Article
%A A. I. Furtsev
%T A contact problem for a plate and a beam in presence of adhesion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 105-117
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/
%G ru
%F SJIM_2019_22_2_a9
A. I. Furtsev. A contact problem for a plate and a beam in presence of adhesion. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 105-117. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a9/