The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 70-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of ideal hydrodynamics are considered with the state equation in the form of the pressure represented as the sum of density and entropy functions. Some twelve-dimensional Lie algebra corresponds to the admissible group of transformations. Basing on the two-dimensional subalgebras of the Lie algebra, we construct the rank 2 invariant submodels of canonical form and evolutionary type. The form is refined of the rank 2 invariant submodels of canonical form and evolutionary type for the eleven-dimensional Lie algebra admitted by the gas dynamics equations with the state equation of the general type.
Keywords: equations of ideal hydrodynamics, state equation, representation of invariant solution, invariant submodel, submodel of evolutionary type, canonical form of a submodel.
Mots-clés : admissible subalgebra
@article{SJIM_2019_22_2_a6,
     author = {D. T. Siraeva},
     title = {The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--80},
     year = {2019},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/}
}
TY  - JOUR
AU  - D. T. Siraeva
TI  - The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 70
EP  - 80
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/
LA  - ru
ID  - SJIM_2019_22_2_a6
ER  - 
%0 Journal Article
%A D. T. Siraeva
%T The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 70-80
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/
%G ru
%F SJIM_2019_22_2_a6
D. T. Siraeva. The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 70-80. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/

[1] Ovsyannikov L. V., “Programma PODMODELI. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | Zbl

[2] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazovoi dinamiki”, Ufim. mat. zhurn., 3:2 (2011), 87–90

[3] Khabirov S. V., “Optimalnye sistemy summy dvukh idealov, dopuskaemykh uravneniyami gidrodinamicheskogo tipa”, Ufim. mat. zhurn., 6:2 (2014), 99–103

[4] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, izd. NGTU, Novosibirsk, 2012

[5] Mamontov E. V., “Invariantnye podmodeli ranga dva uravnenii gazovoi dinamiki”, Prikl. mekhanika i tekhn. fizika, 40:2 (1999), 50–55

[6] Siraeva D. T., “Optimalnaya sistema nepodobnykh podalgebr summy dvukh idealov”, Ufim. mat. zhurn., 6:1 (2014), 94–107 | Zbl

[7] Siraeva D. T., “Reduktsiya chastichno invariantnykh podmodelei ranga 3 defekta 1 k invariantnym podmodelyam”, Mnogofaznye sistemy, 13:1 (2018), 59–63

[8] Khabirov S. V., Analiticheskie metody v gazovoi dinamike, Izd-vo BGU, Ufa, 2013

[9] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[10] Siraeva D. T., Khabirov S. V., “Invariantnaya podmodel ranga 2 na podalgebre iz lineinoi kombinatsii perenosov dlya modeli gidrodinamicheskogo tipa”, Chelyabinskii fiz.-mat. zhurnal, 3:1 (2018), 38–57