The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations of ideal hydrodynamics are considered with the state equation in the form of the pressure represented as the sum of density and entropy functions. Some twelve-dimensional Lie algebra corresponds to the admissible group of transformations. Basing on the two-dimensional subalgebras of the Lie algebra, we construct the rank 2 invariant submodels of canonical form and evolutionary type. The form is refined of the rank 2 invariant submodels of canonical form and evolutionary type for the eleven-dimensional Lie algebra admitted by the gas dynamics equations with the state equation of the general type.
Keywords: equations of ideal hydrodynamics, state equation, representation of invariant solution, invariant submodel, submodel of evolutionary type, canonical form of a submodel.
Mots-clés : admissible subalgebra
@article{SJIM_2019_22_2_a6,
     author = {D. T. Siraeva},
     title = {The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--80},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/}
}
TY  - JOUR
AU  - D. T. Siraeva
TI  - The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 70
EP  - 80
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/
LA  - ru
ID  - SJIM_2019_22_2_a6
ER  - 
%0 Journal Article
%A D. T. Siraeva
%T The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 70-80
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/
%G ru
%F SJIM_2019_22_2_a6
D. T. Siraeva. The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 70-80. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a6/

[1] Ovsyannikov L. V., “Programma PODMODELI. Gazovaya dinamika”, Prikl. matematika i mekhanika, 58:4 (1994), 30–55 | Zbl

[2] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazovoi dinamiki”, Ufim. mat. zhurn., 3:2 (2011), 87–90

[3] Khabirov S. V., “Optimalnye sistemy summy dvukh idealov, dopuskaemykh uravneniyami gidrodinamicheskogo tipa”, Ufim. mat. zhurn., 6:2 (2014), 99–103

[4] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, izd. NGTU, Novosibirsk, 2012

[5] Mamontov E. V., “Invariantnye podmodeli ranga dva uravnenii gazovoi dinamiki”, Prikl. mekhanika i tekhn. fizika, 40:2 (1999), 50–55

[6] Siraeva D. T., “Optimalnaya sistema nepodobnykh podalgebr summy dvukh idealov”, Ufim. mat. zhurn., 6:1 (2014), 94–107 | Zbl

[7] Siraeva D. T., “Reduktsiya chastichno invariantnykh podmodelei ranga 3 defekta 1 k invariantnym podmodelyam”, Mnogofaznye sistemy, 13:1 (2018), 59–63

[8] Khabirov S. V., Analiticheskie metody v gazovoi dinamike, Izd-vo BGU, Ufa, 2013

[9] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[10] Siraeva D. T., Khabirov S. V., “Invariantnaya podmodel ranga 2 na podalgebre iz lineinoi kombinatsii perenosov dlya modeli gidrodinamicheskogo tipa”, Chelyabinskii fiz.-mat. zhurnal, 3:1 (2018), 38–57