Functional invariant solutions to Maxwell's system: dependence on time
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 49-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the generalized functionally invariant solutions to Maxwell's equations. The solutions found contain some functional arbitrariness that can be used for determining the parameters of Maxwell's system (the dielectric and magnetic constants).
Keywords: Maxwell's system, generalized functionally invariant solution.
@article{SJIM_2019_22_2_a4,
     author = {M. V. Neshchadim and A. A. Simonov},
     title = {Functional invariant solutions to {Maxwell's} system: dependence on time},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a4/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. A. Simonov
TI  - Functional invariant solutions to Maxwell's system: dependence on time
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 49
EP  - 61
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a4/
LA  - ru
ID  - SJIM_2019_22_2_a4
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. A. Simonov
%T Functional invariant solutions to Maxwell's system: dependence on time
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 49-61
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a4/
%G ru
%F SJIM_2019_22_2_a4
M. V. Neshchadim; A. A. Simonov. Functional invariant solutions to Maxwell's system: dependence on time. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 49-61. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a4/

[1] Neschadim M. V., “Funktsionalno-invariantnye resheniya sistemy Maksvella”, Sib. zhurn. industr. matematiki, 20:1 (2017), 66–74 | Zbl

[2] Erugin N. P., Smirnov M. M., “Funktsionalno-invariantnye resheniya differentsialnykh uravnenii”, Differents. uravneniya, 17:5 (1981), 853–865 | Zbl

[3] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972

[4] Babich V. M., “Mnogomernyi metod VKB ili luchevoi metod. Ego analogi i obobscheniya”, Differentsialnye uravneniya s chastnymi proizvodnymi-5, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 93–134

[5] Neschadim M. V., “Klassy obobschennykh funktsionalno–invariantnykh reshenii volnovogo uravneniya. I”, Sib. elektron. mat. izvestiya, 2013:10 (2013), 418–435 http://semr.math.nsc.ru | Zbl

[6] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[7] Smirnov V. I., Sobolev S. L., “Novyi metod resheniya ploskoi zadachi uprugikh kolebanii”, Tr. Seismolog. in–ta AN SSSR, 20 (1932)

[8] Smirnov V. I., Sobolev S. L., “O primenenii novogo metoda k izucheniyu uprugikh kolebanii v prostranstve pri nalichii osevoi simmetrii”, Tr. Seismolog. in-ta AN SSSR, 29 (1933), 43–51

[9] Sobolev S. L., “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Tr. Fiz.-mat. in-ta im. Steklova, 5, 1934, 259–264

[10] Shneerson M. S., “Uravneniya Maksvella i funktsionalno–invariantnye resheniya volnovogo uravneniya”, Differents. uravneniya, 4:4 (1968), 743–758 | Zbl

[11] Stelmashuk N. T., “Postroenie funktsionalno-invariantnykh reshenii sistemy Maksvella dlya elektromagnitnogo polya v pustote”, Vestn. AN BSSR. Ser. fiz.-mat. nauki, 1974, no. 4, 35–39

[12] Neschadim M. V., “Resheniya sistemy Maksvella s nulevymi invariantami”, Vestn. Novosibirsk. gos. un-ta. Ser. Matematika, mekhanika, informatika, 6:3 (2006), 59–61 | Zbl

[13] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. I”, Sib. zhurn. industr. matematiki, 14:1 (2011), 27–39 | Zbl

[14] Anikonov Yu. E., Neschadim M. V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii. II”, Sib. zhurn. industr. matematiki, 14:2 (2011), 28–33

[15] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[16] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989

[17] Neshchadim M. V., “Equivalent transformations and some exact solutions to the system of Maxwell's equations”, Selcuk J. Appl. Math., 3:2 (2002), 99–108 | MR | Zbl

[18] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1988