Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_2_a10, author = {M. V. Shamolin}, title = {Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {118--131}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a10/} }
TY - JOUR AU - M. V. Shamolin TI - Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 118 EP - 131 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a10/ LA - ru ID - SJIM_2019_22_2_a10 ER -
%0 Journal Article %A M. V. Shamolin %T Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 118-131 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a10/ %G ru %F SJIM_2019_22_2_a10
M. V. Shamolin. Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 118-131. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a10/
[1] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007
[2] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976
[3] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979
[4] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekhanika zhidkosti i gaza, 1995, no. 3, 23–27
[5] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. AN, 442:4 (2012), 479–481
[6] Shamolin M. V., “Avtokolebaniya pri tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Sib. zhurn. industr. matematiki, 20:4 (2017), 90–102 | Zbl
[7] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. modelirovanie, 27:1 (2015), 33–53
[8] Prandtl L., Gidroaeromekhanika, Izd–vo inostr. lit., M., 1949
[9] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. i prikl. matematika, 14:3 (2008), 3–237 | Zbl
[10] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. AN, 371:4 (2000), 480–483
[11] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd–vo AN SSSR, L., 1933, 133–135
[12] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. i prikl. matematika, 16:4 (2010), 3–229
[13] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 125, VINITI, M., 2013, 3–254
[14] Shamolin M. V., K zadache o dvizhenii tela s perednim ploskim tortsom v soprotivlyayuscheisya srede, Nauchnyi otchet In-ta mekhaniki MGU No 5052, In-t mekhaniki MGU, M., 2010
[15] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Uspekhi mat. nauk, 52:3 (1997), 177–178 | DOI
[16] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1993, no. 1, 68–71
[17] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969
[18] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988