A numerical model of inflammation dynamics in the core of myocardial infarction
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 13-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse.
Mots-clés : myocardial infarction, inflammation, M1 and M2 macrophages, IL-1, IL-10, TNF-$\alpha$.
Keywords: mathematical simulation, direct and inverse problems, genetic algorithm, necrosis, cytokine
@article{SJIM_2019_22_2_a1,
     author = {O. F. Voropaeva and Ch. A. Tsgoev},
     title = {A numerical model of inflammation dynamics in the core of myocardial infarction},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Ch. A. Tsgoev
TI  - A numerical model of inflammation dynamics in the core of myocardial infarction
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 13
EP  - 26
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/
LA  - ru
ID  - SJIM_2019_22_2_a1
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Ch. A. Tsgoev
%T A numerical model of inflammation dynamics in the core of myocardial infarction
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 13-26
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/
%G ru
%F SJIM_2019_22_2_a1
O. F. Voropaeva; Ch. A. Tsgoev. A numerical model of inflammation dynamics in the core of myocardial infarction. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 13-26. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/

[1] Thygesen K., Alpert J. S., White H. D., “Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction”, Eur. Heart J., 28 (2007), 2525–2538 | DOI

[2] Baron T. et al., “Type 2 myocardial infarction in clinical practice”, Heart, 101 (2015), 101–106 | DOI

[3] Nepomnyaschikh L. M., Lushnikova E. L., Semenov D. E., Regeneratorno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003

[4] Frantz S., Nahrendorf M., “Cardiac macrophages and their role in ischemic heart disease”, Cardiovascular Res., 102 (2014), 240–248 | DOI

[5] Yarilin A. A., Immunologiya, GEOTAR-Media, M., 2010

[6] Troidl C. et al., “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med., 13:9B (2009), 3485–3496 | DOI

[7] Gombozhapova A. et al., “Macrophage activation and polarization in post-infarction cardiac remodeling”, J. Biomedical Sci., 24:13 (2017), 11 pp.

[8] Anzai T., “Post-infarction inflammation and left ventricular remodeling”, Circulation J., 77 (2013), 580–587 | DOI

[9] Yang F. et al., “Myocardial infarction and cardiac remodelling in mice”, Exp. Physiology, 87:5 (2002), 547–555 | DOI

[10] Saxena A., Chen W., Su Y., Rai V., Uche O. U., Li N., Frangogiannis N. G., “IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium”, J. Immunol., 191 (2013), 4838–4848 | DOI

[11] Voropaeva O. F., Shokin Yu. I., “Chislennoe modelirovanie v meditsine: nekotorye postanovki zadach i rezultaty raschetov”, Vychisl. tekhnologii, 17:4 (2012), 29–55

[12] Winslow R. et al., “Integrative modeling of the cardiac ventricular myocyte”, WIREs Syst. Biol. Med., 3 (2011), 392–413 | DOI

[13] Lee L. C., Kassab G. S., Guccione J. M., “Mathematical modeling of cardiac growth and remodeling”, WIREs Syst. Biol. Med., 8 (2016), 211–226 | DOI

[14] Shlyakhover V. E., Yabluchanskii N. I., Eremenko S. V., Zabolotskii V. A., “Matematicheskaya model prochnosti stenki serdtsa v zone infarkta miokarda pri razlichnykh usloviyakh ee zazhivleniya”, Krovoobraschenie, 21:4 (1988), 3–6

[15] Belotserkovskii O. M., “Primenenie matematicheskikh metodov i EVM v meditsine”, Vychislitelnaya mekhanika. Sovremennye problemy i rezultaty, Nauka, M., 1991, 148–172 | Zbl

[16] Belotserkovskii O. M. i dr., “Prognozirovanie iskhoda sostoyaniya pri infarkte miokarda”, Dokl. AN SSSR, 261:6 (1981), 1307–1310 | Zbl

[17] Belotserkovskii O. M. i dr., “Matematicheskii analiz zakonomernostei klinicheskogo techeniya infarkta miokarda”, Voprosy kibernetiki. Primenenie matematicheskikh metodov i vychislitelnoi tekhniki v kardiologii i khirurgii, VINITI, M., 1983, 3–15

[18] Belotserkovskii O. M., Vinogradov A. V., Glazunov A. S., “Matematicheskoe modelirovanie dinamiki razvitiya infarkta miokarda”, Voprosy kibernetiki. Biomedinformatika i ee prilozheniya, VINITI, M., 1988, 3–22

[19] Belotserkovskii O. M., Vinogradov A. V., Glazunov A. S., “Metod rannego prognozirovaniya techeniya ostrogo infarkta miokarda i postinfarktnogo kardioskleroza”, Informatika i meditsina, Nauka, M., 1997, 72–119

[20] Crapts L. Y. D., Modeling an angiogenesis treatment after a myocardial infarction, Master of Science Thesis, Delft Technical Univ., 2012, 91 pp.

[21] Berberoglu E., Goktepe S., “Computational Modeling of Myocardial Infarction”, Procedia IUTAM, 12 (2015), 52–61 | DOI

[22] Lin J. et al., “Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms”, Exp. Gerontol., 43 (2008), 296–306 | DOI

[23] Jin Y.-F. et al., “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60, 14 pp. | DOI | Zbl

[24] Wang Y., Jin Y., Ma Y., Halade G., Linsey M., “Mathematical Modeling of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction”, 2011 IEEE Internat. Workshop on Genomic Signal Processing and Statistics (December 4–6, 2011, San Antonio), 202–205

[25] Wang Y. et al., “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012), S21, 8 pp. | DOI

[26] Voropaeva O. F., Plotnikov N. D., Tsgoev Ch. A., “Chislennoe modelirovanie gibeli kletok vsledstvie ishemii”, Sb. trudov Mezhdunar. konf. «Aktualnye problemy matematiki, informatiki i mekhaniki» (Voronezh, 12–15 sentyabrya 2016 g.), Nauchno-issledovatelskie publikatsii, Voronezh, 2016, 221–223 | Zbl

[27] Plotnikov N. D., Tsgoev Ch. A., Voropaeva O. F., “Matematicheskoe modelirovanie protsessov gibeli kletok v zhivom organizme”, Trudy Mezhdunar. konf. «Marchukovskie nauchnye chteniya-2017» (Novosibirsk, 25 iyunya–14 iyulya 2017 g.), Novosibirsk, 2017, 697–704

[28] Sallaberger I. et al., “The design of francis turbine runners by 3D Euler simulations coupled to a breeder genetic algorithm”, Proc. 20 IAHR Symp. Hydraulic Machinery and Systems (Aug. 6–9, 2000, Charlotte), 2000, 10 pp.

[29] Chernyi S. G., Chirkov D. V., Lapin V. N., Skorospelov V. A., Sharov S. V., Chislennoe modelirovanie techenii v turbomashinakh, Nauka, Novosibirsk, 2006

[30] Neimark Yu. I., Matematicheskoe modelirovanie kak nauka iskusstvo, Izd-vo Nizhegorod. gos. un-ta, N. Novgorod, 2010

[31] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990

[32] Lyung L., Identifikatsiya sistem. Teoriya dlya polzovatelya, Nauka, M., 1991

[33] Miao H., Xia X., Perelson A.-S., Wu H., “On Identifiability of nonlinear ODE models and applisations in viral dynamiss”, SIAM Rev. Soc. Ind. Appl. Math., 53:1 (2011), 3–39 | MR | Zbl

[34] Kabanikhin S. I., Voronov D. A., Grozd A. A., Krivorotko O. I., “Identifitsiruemost matematicheskikh modelei meditsinskoi biologii”, Vavilovskii zhurn. genetiki i selektsii, 19:6 (2015), 738–744

[35] Kabanikhin S. I., Ilin A. I., Krivorotko O. I., “Ob opredelenii parametrov modelei, opisyvaemykh sistemami nelineinykh differentsialnykh uravnenii”, Sib. elektron. mat. izv., 11 (2014), 62–76

[36] Gelfand I. M., Tsetlin M. L., “O nekotorykh sposobakh upravleniya slozhnymi sistemami”, Uspekhi mat. nauk, 17:1(103) (1962), 3–25 | Zbl