Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_2_a1, author = {O. F. Voropaeva and Ch. A. Tsgoev}, title = {A numerical model of inflammation dynamics in the core of myocardial infarction}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {13--26}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/} }
TY - JOUR AU - O. F. Voropaeva AU - Ch. A. Tsgoev TI - A numerical model of inflammation dynamics in the core of myocardial infarction JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 13 EP - 26 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/ LA - ru ID - SJIM_2019_22_2_a1 ER -
%0 Journal Article %A O. F. Voropaeva %A Ch. A. Tsgoev %T A numerical model of inflammation dynamics in the core of myocardial infarction %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 13-26 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/ %G ru %F SJIM_2019_22_2_a1
O. F. Voropaeva; Ch. A. Tsgoev. A numerical model of inflammation dynamics in the core of myocardial infarction. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 13-26. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a1/
[1] Thygesen K., Alpert J. S., White H. D., “Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction”, Eur. Heart J., 28 (2007), 2525–2538 | DOI
[2] Baron T. et al., “Type 2 myocardial infarction in clinical practice”, Heart, 101 (2015), 101–106 | DOI
[3] Nepomnyaschikh L. M., Lushnikova E. L., Semenov D. E., Regeneratorno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003
[4] Frantz S., Nahrendorf M., “Cardiac macrophages and their role in ischemic heart disease”, Cardiovascular Res., 102 (2014), 240–248 | DOI
[5] Yarilin A. A., Immunologiya, GEOTAR-Media, M., 2010
[6] Troidl C. et al., “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med., 13:9B (2009), 3485–3496 | DOI
[7] Gombozhapova A. et al., “Macrophage activation and polarization in post-infarction cardiac remodeling”, J. Biomedical Sci., 24:13 (2017), 11 pp.
[8] Anzai T., “Post-infarction inflammation and left ventricular remodeling”, Circulation J., 77 (2013), 580–587 | DOI
[9] Yang F. et al., “Myocardial infarction and cardiac remodelling in mice”, Exp. Physiology, 87:5 (2002), 547–555 | DOI
[10] Saxena A., Chen W., Su Y., Rai V., Uche O. U., Li N., Frangogiannis N. G., “IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium”, J. Immunol., 191 (2013), 4838–4848 | DOI
[11] Voropaeva O. F., Shokin Yu. I., “Chislennoe modelirovanie v meditsine: nekotorye postanovki zadach i rezultaty raschetov”, Vychisl. tekhnologii, 17:4 (2012), 29–55
[12] Winslow R. et al., “Integrative modeling of the cardiac ventricular myocyte”, WIREs Syst. Biol. Med., 3 (2011), 392–413 | DOI
[13] Lee L. C., Kassab G. S., Guccione J. M., “Mathematical modeling of cardiac growth and remodeling”, WIREs Syst. Biol. Med., 8 (2016), 211–226 | DOI
[14] Shlyakhover V. E., Yabluchanskii N. I., Eremenko S. V., Zabolotskii V. A., “Matematicheskaya model prochnosti stenki serdtsa v zone infarkta miokarda pri razlichnykh usloviyakh ee zazhivleniya”, Krovoobraschenie, 21:4 (1988), 3–6
[15] Belotserkovskii O. M., “Primenenie matematicheskikh metodov i EVM v meditsine”, Vychislitelnaya mekhanika. Sovremennye problemy i rezultaty, Nauka, M., 1991, 148–172 | Zbl
[16] Belotserkovskii O. M. i dr., “Prognozirovanie iskhoda sostoyaniya pri infarkte miokarda”, Dokl. AN SSSR, 261:6 (1981), 1307–1310 | Zbl
[17] Belotserkovskii O. M. i dr., “Matematicheskii analiz zakonomernostei klinicheskogo techeniya infarkta miokarda”, Voprosy kibernetiki. Primenenie matematicheskikh metodov i vychislitelnoi tekhniki v kardiologii i khirurgii, VINITI, M., 1983, 3–15
[18] Belotserkovskii O. M., Vinogradov A. V., Glazunov A. S., “Matematicheskoe modelirovanie dinamiki razvitiya infarkta miokarda”, Voprosy kibernetiki. Biomedinformatika i ee prilozheniya, VINITI, M., 1988, 3–22
[19] Belotserkovskii O. M., Vinogradov A. V., Glazunov A. S., “Metod rannego prognozirovaniya techeniya ostrogo infarkta miokarda i postinfarktnogo kardioskleroza”, Informatika i meditsina, Nauka, M., 1997, 72–119
[20] Crapts L. Y. D., Modeling an angiogenesis treatment after a myocardial infarction, Master of Science Thesis, Delft Technical Univ., 2012, 91 pp.
[21] Berberoglu E., Goktepe S., “Computational Modeling of Myocardial Infarction”, Procedia IUTAM, 12 (2015), 52–61 | DOI
[22] Lin J. et al., “Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms”, Exp. Gerontol., 43 (2008), 296–306 | DOI
[23] Jin Y.-F. et al., “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60, 14 pp. | DOI | Zbl
[24] Wang Y., Jin Y., Ma Y., Halade G., Linsey M., “Mathematical Modeling of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction”, 2011 IEEE Internat. Workshop on Genomic Signal Processing and Statistics (December 4–6, 2011, San Antonio), 202–205
[25] Wang Y. et al., “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012), S21, 8 pp. | DOI
[26] Voropaeva O. F., Plotnikov N. D., Tsgoev Ch. A., “Chislennoe modelirovanie gibeli kletok vsledstvie ishemii”, Sb. trudov Mezhdunar. konf. «Aktualnye problemy matematiki, informatiki i mekhaniki» (Voronezh, 12–15 sentyabrya 2016 g.), Nauchno-issledovatelskie publikatsii, Voronezh, 2016, 221–223 | Zbl
[27] Plotnikov N. D., Tsgoev Ch. A., Voropaeva O. F., “Matematicheskoe modelirovanie protsessov gibeli kletok v zhivom organizme”, Trudy Mezhdunar. konf. «Marchukovskie nauchnye chteniya-2017» (Novosibirsk, 25 iyunya–14 iyulya 2017 g.), Novosibirsk, 2017, 697–704
[28] Sallaberger I. et al., “The design of francis turbine runners by 3D Euler simulations coupled to a breeder genetic algorithm”, Proc. 20 IAHR Symp. Hydraulic Machinery and Systems (Aug. 6–9, 2000, Charlotte), 2000, 10 pp.
[29] Chernyi S. G., Chirkov D. V., Lapin V. N., Skorospelov V. A., Sharov S. V., Chislennoe modelirovanie techenii v turbomashinakh, Nauka, Novosibirsk, 2006
[30] Neimark Yu. I., Matematicheskoe modelirovanie kak nauka iskusstvo, Izd-vo Nizhegorod. gos. un-ta, N. Novgorod, 2010
[31] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990
[32] Lyung L., Identifikatsiya sistem. Teoriya dlya polzovatelya, Nauka, M., 1991
[33] Miao H., Xia X., Perelson A.-S., Wu H., “On Identifiability of nonlinear ODE models and applisations in viral dynamiss”, SIAM Rev. Soc. Ind. Appl. Math., 53:1 (2011), 3–39 | MR | Zbl
[34] Kabanikhin S. I., Voronov D. A., Grozd A. A., Krivorotko O. I., “Identifitsiruemost matematicheskikh modelei meditsinskoi biologii”, Vavilovskii zhurn. genetiki i selektsii, 19:6 (2015), 738–744
[35] Kabanikhin S. I., Ilin A. I., Krivorotko O. I., “Ob opredelenii parametrov modelei, opisyvaemykh sistemami nelineinykh differentsialnykh uravnenii”, Sib. elektron. mat. izv., 11 (2014), 62–76
[36] Gelfand I. M., Tsetlin M. L., “O nekotorykh sposobakh upravleniya slozhnymi sistemami”, Uspekhi mat. nauk, 17:1(103) (1962), 3–25 | Zbl