The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 104-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches are proposed for recovering a symmetric $m$-tensor field in a unit disk from the given values of ray transforms. The approaches are based on the method of approximate inverse. The first approach allows us to reconstruct all components of the tensor field, while the second recovers the potentials of the solenoidal part and $m$ potential parts of the tensor field.
Keywords: tensor tomography, method of approximate inverse, adjoint operator, ray transform, tensor field, potential.
Mots-clés : Radon transform
@article{SJIM_2019_22_1_a9,
     author = {I. E. Svetov and A. P. Polyakova and S. V. Maltseva},
     title = {The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {104--115},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
AU  - S. V. Maltseva
TI  - The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 104
EP  - 115
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/
LA  - ru
ID  - SJIM_2019_22_1_a9
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%A S. V. Maltseva
%T The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 104-115
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/
%G ru
%F SJIM_2019_22_1_a9
I. E. Svetov; A. P. Polyakova; S. V. Maltseva. The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 104-115. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/

[1] Deans S., The Radon Transform and Some of Its Applications, Wiley, N.Y., 1983 | MR | Zbl

[2] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990

[3] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993

[4] Svetov I. E., “Svoistva luchevykh preobrazovanii dvumernykh 2-tenzornykh polei, zadannykh v edinichnom kruge”, Sib. zhurn. industr. matematiki, 16:4 (2013), 121–130 | Zbl

[5] Derevtsov E. Yu., Svetov I. E., “Tomography of tensor fields in the plain”, Euras. J. Math. Comp. Appl., 3:2 (2015), 24–68

[6] Svetov I. E., “Formuly obrascheniya dlya vosstanovleniya dvumernykh garmonicheskikh vektornykh polei po izvestnym luchevym preobrazovaniyam”, Sib. elektron. mat. izv., 12 (2015), 436–446 http://semr.math.nsc.ru | Zbl

[7] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inverse Ill-posed Probl., 7:1 (1999), 83–103 | DOI | MR | Zbl

[8] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl

[9] Derevtsov E. Yu., Kashina I. G., “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sib. zhurn. industr. matematiki, 5:1 (2002), 39–62

[10] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., “Ispolzovanie B-splainov v zadache emissionnoi 2D-tomografii v refragiruyuschei srede”, Sib. zhurn. industr. matematiki, 11:3 (2008), 45–60 | Zbl

[11] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., Schuster T., “Numerical B-spline solution of emission and vector 2D-tomography problems for media with absorbtion and refraction”, Proc. 2008 IEEE Region 8 Internat. Conf. on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08 (Novosibirsk, 2008), 212–217 | MR

[12] Svetov I. E., Polyakova A. P., “Vosstanovlenie 2-tenzornykh polei, zadannykh v edinichnom kruge, po ikh luchevym preobrazovaniyam na osnove MNK s ispolzovaniem B-splainov”, Sib. zhurn. vychisl. matematiki, 13:2 (2010), 183–199 | Zbl

[13] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on Bsplines for 2D-vector field tomography in a refracting medium”, Math. Comput. Simulation, 97 (2014), 207–223 | DOI | MR

[14] Derevtsov E. Yu., Kazantsev S. G., Schuster T., “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Inverse Ill-posed Probl., 15:1 (2007), 1–38 | DOI | MR

[15] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular value decomposition and its application to numerical inversion for ray transforms in 2D-vector tomography”, J. Inverse Ill-posed Probl., 19:4–5 (2011), 689–715 | MR | Zbl

[16] Svetov I. E., Polyakova A. P., “Sravnenie dvukh algoritmov chislennogo resheniya zadachi dvumernoi vektornoi tomografii”, Sib. elektron. mat. izv., 10 (2013), 90–108 http://semr.math.nsc.ru

[17] Derevtsov E. Yu., Polyakova A. P., “Reshenie zadachi integralnoi geometrii 2-tenzornykh polei metodom singulyarnogo razlozheniya”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 73–94 | Zbl

[18] Svetov I. E., Polyakova A. P., “Priblizhennoe reshenie zadachi dvumernoi 2-tenzornoi tomografii s ispolzovaniem usechennogo singulyarnogo razlozheniya”, Sib. elektron. mat. izv., 12 (2015), 480–499 http://semr.math.nsc.ru | Zbl

[19] Kazantsev S. G., Bukhgeim A. A., “Singular value decomposition for the 2D fan-beam Radon transform of tensor fields”, J. Inverse Ill-posed Probl., 12:3 (2004), 245–278 | DOI | MR | Zbl

[20] Kazantsev S. G., Bukhgeim A. A., “The Chebyshev ridge polynomials in 2D-tensor tomography”, J. Inverse Ill-posed Probl., 14:2 (2006), 157–188 | DOI | MR | Zbl

[21] Louis A. K., Maass P., “A mollifier method for linear operator equations of the first kind”, Inverse Problems, 6:3 (1990), 427–440 | DOI | MR | Zbl

[22] Louis A. K., “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12:2 (1996), 175–190 | DOI | MR | Zbl

[23] Schuster T., The Method of Approximate Inverse: Theory and Applications, Lecture Notes in Mathematics, 1906, Springer-Verl., Heidelberg, 2007 | DOI | MR | Zbl

[24] Louis A. K., Schuster T., “A novel filter design technique in 2D computerized tomography”, Inverse Problems, 12:5 (1996), 685–696 | DOI | MR | Zbl

[25] Rieder A., Schuster T., “The Approximate inverse in action with an application to computerized tomography”, SIAM J. Numer. Anal., 37:6 (2000), 1909–1929 | DOI | MR | Zbl

[26] Derevtsov E. Yu., Dietz R., Louis A. K., Schuster T., “Influence of refraction to the accuracy of a solution for the 2D-emission tomography problem”, J. Inverse Ill-posed Probl., 8:2 (2000), 161–191 | DOI | MR | Zbl

[27] Rieder A., Schuser T., “The approximate inverse in action III: 3D-Doppler tomography”, Numer. Math., 97:2 (2004), 353–378 | DOI | MR | Zbl

[28] Schuser T., “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Problems, 21:1 (2005), 75–91 | DOI | MR

[29] Svetov I. E., Maltseva S. V., Polyakova A. P., “Priblizhennoe obraschenie operatorov dvumernoi vektornoi tomografii”, Sib. elektron. mat. izv., 13 (2016), 607–623 http://semr.math.nsc.ru

[30] Svetov I. E., Maltseva S. V., Polyakova A. P., “Numerical solution of 2D-vector tomography problem using the method of approximate inverse”, AIP Conf. Proc., 1759, 2016, 020132 | DOI | MR

[31] Derevtsov E. Yu., Louis A. K., Maltseva S. V., Polyakova A. P., Svetov I. E., “Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems”, Inverse Problems, 33:12 (2017), 124001 | DOI | MR | Zbl

[32] Derevtsov E. Yu., “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-posed Probl., 13:3 (2005), 213–246 | DOI | MR | Zbl

[33] Boman J., Sharafutdinov V., “Stability estimates in tensor tomography”, Inverse Probl. Imaging, 12:5 (2018), 1245–1262 | DOI | MR | Zbl

[34] Sneddon I., Preobrazovaniya Fure, Izd-vo inostr. lit., M., 1955

[35] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 1, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969