Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_1_a9, author = {I. E. Svetov and A. P. Polyakova and S. V. Maltseva}, title = {The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {104--115}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova AU - S. V. Maltseva TI - The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 104 EP - 115 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/ LA - ru ID - SJIM_2019_22_1_a9 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %A S. V. Maltseva %T The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 104-115 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/ %G ru %F SJIM_2019_22_1_a9
I. E. Svetov; A. P. Polyakova; S. V. Maltseva. The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 104-115. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a9/
[1] Deans S., The Radon Transform and Some of Its Applications, Wiley, N.Y., 1983 | MR | Zbl
[2] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990
[3] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993
[4] Svetov I. E., “Svoistva luchevykh preobrazovanii dvumernykh 2-tenzornykh polei, zadannykh v edinichnom kruge”, Sib. zhurn. industr. matematiki, 16:4 (2013), 121–130 | Zbl
[5] Derevtsov E. Yu., Svetov I. E., “Tomography of tensor fields in the plain”, Euras. J. Math. Comp. Appl., 3:2 (2015), 24–68
[6] Svetov I. E., “Formuly obrascheniya dlya vosstanovleniya dvumernykh garmonicheskikh vektornykh polei po izvestnym luchevym preobrazovaniyam”, Sib. elektron. mat. izv., 12 (2015), 436–446 http://semr.math.nsc.ru | Zbl
[7] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission 2D-tomography problem for a medium with absorption and refraction”, J. Inverse Ill-posed Probl., 7:1 (1999), 83–103 | DOI | MR | Zbl
[8] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl
[9] Derevtsov E. Yu., Kashina I. G., “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sib. zhurn. industr. matematiki, 5:1 (2002), 39–62
[10] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., “Ispolzovanie B-splainov v zadache emissionnoi 2D-tomografii v refragiruyuschei srede”, Sib. zhurn. industr. matematiki, 11:3 (2008), 45–60 | Zbl
[11] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., Schuster T., “Numerical B-spline solution of emission and vector 2D-tomography problems for media with absorbtion and refraction”, Proc. 2008 IEEE Region 8 Internat. Conf. on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08 (Novosibirsk, 2008), 212–217 | MR
[12] Svetov I. E., Polyakova A. P., “Vosstanovlenie 2-tenzornykh polei, zadannykh v edinichnom kruge, po ikh luchevym preobrazovaniyam na osnove MNK s ispolzovaniem B-splainov”, Sib. zhurn. vychisl. matematiki, 13:2 (2010), 183–199 | Zbl
[13] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on Bsplines for 2D-vector field tomography in a refracting medium”, Math. Comput. Simulation, 97 (2014), 207–223 | DOI | MR
[14] Derevtsov E. Yu., Kazantsev S. G., Schuster T., “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Inverse Ill-posed Probl., 15:1 (2007), 1–38 | DOI | MR
[15] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular value decomposition and its application to numerical inversion for ray transforms in 2D-vector tomography”, J. Inverse Ill-posed Probl., 19:4–5 (2011), 689–715 | MR | Zbl
[16] Svetov I. E., Polyakova A. P., “Sravnenie dvukh algoritmov chislennogo resheniya zadachi dvumernoi vektornoi tomografii”, Sib. elektron. mat. izv., 10 (2013), 90–108 http://semr.math.nsc.ru
[17] Derevtsov E. Yu., Polyakova A. P., “Reshenie zadachi integralnoi geometrii 2-tenzornykh polei metodom singulyarnogo razlozheniya”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 73–94 | Zbl
[18] Svetov I. E., Polyakova A. P., “Priblizhennoe reshenie zadachi dvumernoi 2-tenzornoi tomografii s ispolzovaniem usechennogo singulyarnogo razlozheniya”, Sib. elektron. mat. izv., 12 (2015), 480–499 http://semr.math.nsc.ru | Zbl
[19] Kazantsev S. G., Bukhgeim A. A., “Singular value decomposition for the 2D fan-beam Radon transform of tensor fields”, J. Inverse Ill-posed Probl., 12:3 (2004), 245–278 | DOI | MR | Zbl
[20] Kazantsev S. G., Bukhgeim A. A., “The Chebyshev ridge polynomials in 2D-tensor tomography”, J. Inverse Ill-posed Probl., 14:2 (2006), 157–188 | DOI | MR | Zbl
[21] Louis A. K., Maass P., “A mollifier method for linear operator equations of the first kind”, Inverse Problems, 6:3 (1990), 427–440 | DOI | MR | Zbl
[22] Louis A. K., “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12:2 (1996), 175–190 | DOI | MR | Zbl
[23] Schuster T., The Method of Approximate Inverse: Theory and Applications, Lecture Notes in Mathematics, 1906, Springer-Verl., Heidelberg, 2007 | DOI | MR | Zbl
[24] Louis A. K., Schuster T., “A novel filter design technique in 2D computerized tomography”, Inverse Problems, 12:5 (1996), 685–696 | DOI | MR | Zbl
[25] Rieder A., Schuster T., “The Approximate inverse in action with an application to computerized tomography”, SIAM J. Numer. Anal., 37:6 (2000), 1909–1929 | DOI | MR | Zbl
[26] Derevtsov E. Yu., Dietz R., Louis A. K., Schuster T., “Influence of refraction to the accuracy of a solution for the 2D-emission tomography problem”, J. Inverse Ill-posed Probl., 8:2 (2000), 161–191 | DOI | MR | Zbl
[27] Rieder A., Schuser T., “The approximate inverse in action III: 3D-Doppler tomography”, Numer. Math., 97:2 (2004), 353–378 | DOI | MR | Zbl
[28] Schuser T., “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Problems, 21:1 (2005), 75–91 | DOI | MR
[29] Svetov I. E., Maltseva S. V., Polyakova A. P., “Priblizhennoe obraschenie operatorov dvumernoi vektornoi tomografii”, Sib. elektron. mat. izv., 13 (2016), 607–623 http://semr.math.nsc.ru
[30] Svetov I. E., Maltseva S. V., Polyakova A. P., “Numerical solution of 2D-vector tomography problem using the method of approximate inverse”, AIP Conf. Proc., 1759, 2016, 020132 | DOI | MR
[31] Derevtsov E. Yu., Louis A. K., Maltseva S. V., Polyakova A. P., Svetov I. E., “Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems”, Inverse Problems, 33:12 (2017), 124001 | DOI | MR | Zbl
[32] Derevtsov E. Yu., “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-posed Probl., 13:3 (2005), 213–246 | DOI | MR | Zbl
[33] Boman J., Sharafutdinov V., “Stability estimates in tensor tomography”, Inverse Probl. Imaging, 12:5 (2018), 1245–1262 | DOI | MR | Zbl
[34] Sneddon I., Preobrazovaniya Fure, Izd-vo inostr. lit., M., 1955
[35] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 1, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969