Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 74-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some deterministic and stochastic models are constructed basing on the same assumptions about the dynamics of HIV-1 infection. The deterministic model has the form of a system of differential equations with three delays. The stochastic model is based on a branching process with the interaction of particles and takes into account the stages of maturation of cells and virions. The durations of these stages correspond to the parameters describing the delays in the deterministic model. The influence of discreteness of stochastic model variables on the dynamics of HIV-1 infection is demonstrated. We find the coinciding and significantly different conditions of HIV-1 infection elimination in the framework of deterministic and stochastic models.
Mots-clés : HIV-1 infection
Keywords: delay differential equation, branching process with interaction and immigration of particles, Monte-Carlo method, basic reproductive number.
@article{SJIM_2019_22_1_a7,
     author = {N. V. Pertsev and B. Yu. Pichugin and K. K. Loginov},
     title = {Stochastic analog of the dynamic model of {HIV-1} infection described by delay differential equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {74--89},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a7/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - K. K. Loginov
TI  - Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 74
EP  - 89
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a7/
LA  - ru
ID  - SJIM_2019_22_1_a7
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A K. K. Loginov
%T Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 74-89
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a7/
%G ru
%F SJIM_2019_22_1_a7
N. V. Pertsev; B. Yu. Pichugin; K. K. Loginov. Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a7/

[1] Eftimie R., Gillard J. J., Cantrell D. A., “Mathematical models for immunology: current state of the art and future research directions”, Bull. Math. Biol., 78 (2016), 2091–2134 | DOI | MR | Zbl

[2] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 | DOI | MR | Zbl

[3] Nakaoka S., Shingo I., Sato K., “Dynamics of HIV infection in lymphoid tissue network”, J. Math. Biol., 72 (2016), 909–938 | DOI | MR | Zbl

[4] Pankavich S., “The effects of latent infection on the dynamics of HIV”, Differ. Equ. Dyn. Syst., 24:3 (2016), 281–303 | DOI | MR | Zbl

[5] Taltavull D. S., Vieiro A., Alarcon T., “Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy”, J. Math. Biol., 73 (2016), 919–946 | DOI | MR | Zbl

[6] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 | DOI | MR | Zbl

[7] Banks H. T., Bortz D. M., “A parameter sensitivity methodology in the context of HIV delay equation models”, J. Math. Biol., 50 (2005), 607–625 | DOI | MR | Zbl

[8] Pawelek K. A., Liu S., Pahlevani F., Rong F. L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 | DOI | MR | Zbl

[9] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 | DOI | MR | Zbl

[10] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 | DOI | MR | Zbl

[11] Pertsev N. V., “Globalnaya razreshimost i otsenki reshenii zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii s zapazdyvaniem, zadannykh na metricheskom prostranstve”, Sib. mat. zhurn., 59:1 (2018), 143–159

[12] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[13] Obolenskii A. Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukrainskii mat. zhurn., 35 (1983), 574–579 | Zbl

[14] Chereshnev V. A., Bocharov G. A., Kim A. V., Bazhan S. I., Gainova I. A., Krasovskii A. N., Shmagel N. G., Ivanov A. V., Safronov M. A., Tretyakova R. M., Vvedenie v zadachi modelirovaniya i upravleniya dinamikoi VICh infektsii, In-t komp yuternykh issledovanii, M.–Izhevsk, 2016