Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_1_a5, author = {N. P. Lazarev and G. M. Semenova}, title = {Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {53--62}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/} }
TY - JOUR AU - N. P. Lazarev AU - G. M. Semenova TI - Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 53 EP - 62 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/ LA - ru ID - SJIM_2019_22_1_a5 ER -
%0 Journal Article %A N. P. Lazarev %A G. M. Semenova %T Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 53-62 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/ %G ru %F SJIM_2019_22_1_a5
N. P. Lazarev; G. M. Semenova. Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/
[1] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[2] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[3] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 737–750 | DOI | MR | Zbl
[4] Khludnev A. M., Popova T. S., “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR | Zbl
[5] Pyatkina E. V., “O zadache upravleniya dlya dvusloinogo uprugogo tela s treschinoi”, Sib. zhurn. chistoi i prikl. matematiki, 16:4 (2016), 103–112 | Zbl
[6] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crackdefect interaction: The antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[7] Popova T., Rogerson G. A., “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67 (2016), 105 | DOI | MR | Zbl
[8] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl
[9] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[10] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Industr. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl
[11] Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[12] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | Zbl
[13] Faella L., Khludnev A., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Methods Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR | Zbl
[14] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[15] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl
[16] Shcherbakov V. V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67 (2016), 71 | DOI | MR | Zbl
[17] Lazarev N. P., “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96:4 (2016), 509–518 | DOI | MR
[18] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR
[19] Lazarev N., “Existence of an optimal size of a delaminated rigid inclusion embedded in the Kirchhoff-Love plate”, Bound. Value Probl., 2015, 180 https://www.springer.com/mathematics/analysis/journal/13661 | DOI | MR | Zbl
[20] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[21] Khludnev A., Negri A., “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[22] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[23] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, European J. Mech. A. Solids, 29:3 (2010), 392–399 | DOI | MR
[24] Leugering G., Sokolowski J., Zochowski A., “Control of crack propagation by shape-topological optimization”, Discrete Contin. Dyn. Syst. Ser. A, 35:6 (2015), 2625–2657 | DOI | MR | Zbl
[25] Hlavaček I., Haslinger J., Nečas J., Lovišek J., Solution of Variational Inequalities in Mechanics, Springer-Verl., N.Y., 1988 | MR | Zbl
[26] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976