Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is some two-dimensional model describing equilibrium of a composite solid with a thin rigid inclusion and a crack. A boundary condition of Signorini's type is prescribed on the crack curve. For a family of corresponding variational problems, the dependence is analyzed of their solutions on the parameter characterizing the location of the rigid inclusion. The existence of solution of the optimal control problem is proved. For this problem, the quality functional is defined with the help of an arbitrary continuous functional on the solution space, while the location of the inclusion is chosen as the control parameter.
Keywords: variational inequality, optimal control problem, nonpenetration condition, nonlinear boundary conditions, crack, rigid inclusion.
@article{SJIM_2019_22_1_a5,
     author = {N. P. Lazarev and G. M. Semenova},
     title = {Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - G. M. Semenova
TI  - Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 53
EP  - 62
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/
LA  - ru
ID  - SJIM_2019_22_1_a5
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A G. M. Semenova
%T Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 53-62
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/
%G ru
%F SJIM_2019_22_1_a5
N. P. Lazarev; G. M. Semenova. Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a5/

[1] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[2] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[3] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 737–750 | DOI | MR | Zbl

[4] Khludnev A. M., Popova T. S., “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR | Zbl

[5] Pyatkina E. V., “O zadache upravleniya dlya dvusloinogo uprugogo tela s treschinoi”, Sib. zhurn. chistoi i prikl. matematiki, 16:4 (2016), 103–112 | Zbl

[6] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crackdefect interaction: The antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[7] Popova T., Rogerson G. A., “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67 (2016), 105 | DOI | MR | Zbl

[8] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[9] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[10] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Industr. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl

[11] Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl

[12] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | Zbl

[13] Faella L., Khludnev A., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Methods Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR | Zbl

[14] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[15] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[16] Shcherbakov V. V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67 (2016), 71 | DOI | MR | Zbl

[17] Lazarev N. P., “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96:4 (2016), 509–518 | DOI | MR

[18] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR

[19] Lazarev N., “Existence of an optimal size of a delaminated rigid inclusion embedded in the Kirchhoff-Love plate”, Bound. Value Probl., 2015, 180 https://www.springer.com/mathematics/analysis/journal/13661 | DOI | MR | Zbl

[20] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[21] Khludnev A., Negri A., “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[22] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[23] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, European J. Mech. A. Solids, 29:3 (2010), 392–399 | DOI | MR

[24] Leugering G., Sokolowski J., Zochowski A., “Control of crack propagation by shape-topological optimization”, Discrete Contin. Dyn. Syst. Ser. A, 35:6 (2015), 2625–2657 | DOI | MR | Zbl

[25] Hlavaček I., Haslinger J., Nečas J., Lovišek J., Solution of Variational Inequalities in Mechanics, Springer-Verl., N.Y., 1988 | MR | Zbl

[26] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976