Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 24-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the problem of numerical simulation of acoustic waves propagation in a two-dimensional inhomogeneous medium represented by the atmosphere-forestland-ground model. A specific feature of the simulation is the introduction into the basic equations of acoustics of a linear damping function that characterizes the energy loss of the acoustic wave with respect to afforestation. The problem is considered of interaction between the acoustic waves incident at a given angle from the atmosphere to the forestland-ground boundary and the seismic waves arising in the ground. The issue of the forestland influence on the levels of acoustic and seismic waves is investigated. In particular, the impact of the friction coefficient on the attenuation rate of acoustic oscillations in the forestland is estimated. The algorithm and software are developed and implemented for calculating the acoustic pressure levels in various media, by using the wave equation for the atmosphere, Euler's gas dynamics equations for the forestland, and the elasticity equation for the ground. The results of numerical experiments are presented as instantaneous images of the wave field.
Keywords: technogenic noise, infrasonic wave, geoecological danger, forestland, numerical experiment, equations of gas dynamics, numerical result.
Mots-clés : noise absorption
@article{SJIM_2019_22_1_a2,
     author = {G. M. Voskoboinikova and D. A. Karavaev and M. S. Khairetdinov},
     title = {Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {24--33},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/}
}
TY  - JOUR
AU  - G. M. Voskoboinikova
AU  - D. A. Karavaev
AU  - M. S. Khairetdinov
TI  - Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 24
EP  - 33
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/
LA  - ru
ID  - SJIM_2019_22_1_a2
ER  - 
%0 Journal Article
%A G. M. Voskoboinikova
%A D. A. Karavaev
%A M. S. Khairetdinov
%T Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 24-33
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/
%G ru
%F SJIM_2019_22_1_a2
G. M. Voskoboinikova; D. A. Karavaev; M. S. Khairetdinov. Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 24-33. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/

[1] Khairetdinov M. S., Avrorov S. A., Voskoboinikova G. M., Sedukhina G. F., “Otsenivanie seismoakusticheskikh effektov tekhnogennykh vzryvov s pomoschyu seismicheskikh vibratorov”, Tekhnologii seismorazvedki, 2012, no. 2, 98–105

[2] Khairetdinov M. S., Kovalevskii V. V., Voskoboinikova G. M., Sedukhina G. F., “Otsenivanie meteozavisimykh geoekologicheskikh riskov ot vzryvov s pomoschyu seismicheskikh vibratorov”, Tekhnologii seismorazvedki, 2016, no. 3, 132–138

[3] T. Van Renterghem et al., “Using natural means to reduce surface transport noise during propagation outdoors”, Appl. Acoustics, 92 (2015), 86–101 | DOI

[4] Klein S. V., Koshurnikov D. N., “Otsenka shumovoi ekspozitsii i svyazannogo s nei riska zdorovyu naseleniya, prozhivayuschego v zone vliyaniya aeroporta”, Izv. Samar. nauch. tsentra RAN, 15:3(6) (2013), 1806–1812

[5] Krasnov V. M., Drobzheva Ya. V., Maslov A. N., “Akusticheskoe pole na zemle pri vzryve rakety-nositelya”, Vestn. NYaTs, 2006, no. 2, 79–85

[6] Orlov S. A., Matematicheskoe modelirovanie protsessov aerodinamiki v lesnykh massivakh i nasazhdeniyakh, Dis. ... kand. fiz.-mat. nauk, Tomsk, 2012

[7] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973

[8] V. V. Gubarev et al., “Prediction of environmental risks from explosions based on a set of coupled geophysical fields”, Optoelectronics, Instrumentation and Data Processing, 50:4 (2014), 3–13 | DOI

[9] Khairetdinov M., Kovalevsky V., Voskoboinikova G., Sedukhina G., “Vibroseismoacoustic method in studying of geophysical fields interaction in ground atmosphere”, Proc. 14 Internat. Multidisciplinary Scientific Geoconference «Informatics, GeoInformatics and Remote Sensing SGEM-2014» (Albena, 2014), v. 1, 925–931

[10] Sitnik B. B., “Modelirovanie vliyaniya massiva rastitelnosti na rasprostranenie akusticheskikh vozmuschenii”, Mat. modelirovanie, 19:8 (2007), 90–96 | Zbl

[11] Chobeau P., Modeling of Sound Propagation in Forests Using the Transmission Line Matrix Method. Study of Multiple Scattering and Ground Effects Related to Forests, Univ. du Maine, Le Mans, 2014

[12] Johansson E., The Sound Amplifying Forest with Emphasis on Sounds from Wind Turbines, Chalmers Univ. of Technology, 2010

[13] A.S. Alekseev i dr., “Effekt akustoseismicheskoi induktsii pri vibroseismicheskom zondirovanii”, Dokl. AN, 346:5 (1996), 664–667

[14] Mikhailenko B. G., Mikhailov A. A., “Numerical modeling of seismic and acoustic-gravity waves propagation in an «earth-atmosphere» model in the presence of wind in the air”, Numer. Analysis and Applications, 7:2 (2014), 124–135 | DOI | MR | Zbl

[15] Komatitsch D., Tromp J., “A perfectly matched layer (PML) absorbing condition for the second-order elastic wave equation”, Geophys. J. Internat., 154 (2003), 146–153 | DOI

[16] Komatitsch D., Martin R., “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, Geophysics, 72 (2007), 155–167 | DOI

[17] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51 (1986), 889–901 | DOI

[18] Karavaev D. A., Glinsky B. M., Kovalevsky V. V., “A technology of 3D elastic wave propagation simulation using hybrid supercomputers”, Proc. 1 Russian Conf. on Supercomputing Days, CEUR Workshop, 1482, 2015, 26–33

[19] Yakimenko A. A., Morozov A. E., Karavaev D. A., “Practical aspects of using a neural network to solve inverse geophysical problems”, IOP Conf. J. Physics. Conf. Ser., 1015 (2018), 032148 | DOI