Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_1_a2, author = {G. M. Voskoboinikova and D. A. Karavaev and M. S. Khairetdinov}, title = {Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {24--33}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/} }
TY - JOUR AU - G. M. Voskoboinikova AU - D. A. Karavaev AU - M. S. Khairetdinov TI - Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 24 EP - 33 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/ LA - ru ID - SJIM_2019_22_1_a2 ER -
%0 Journal Article %A G. M. Voskoboinikova %A D. A. Karavaev %A M. S. Khairetdinov %T Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 24-33 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/ %G ru %F SJIM_2019_22_1_a2
G. M. Voskoboinikova; D. A. Karavaev; M. S. Khairetdinov. Numerical simulation of acoustic waves propagation in an atmosphere-forestland-ground system. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 1, pp. 24-33. http://geodesic.mathdoc.fr/item/SJIM_2019_22_1_a2/
[1] Khairetdinov M. S., Avrorov S. A., Voskoboinikova G. M., Sedukhina G. F., “Otsenivanie seismoakusticheskikh effektov tekhnogennykh vzryvov s pomoschyu seismicheskikh vibratorov”, Tekhnologii seismorazvedki, 2012, no. 2, 98–105
[2] Khairetdinov M. S., Kovalevskii V. V., Voskoboinikova G. M., Sedukhina G. F., “Otsenivanie meteozavisimykh geoekologicheskikh riskov ot vzryvov s pomoschyu seismicheskikh vibratorov”, Tekhnologii seismorazvedki, 2016, no. 3, 132–138
[3] T. Van Renterghem et al., “Using natural means to reduce surface transport noise during propagation outdoors”, Appl. Acoustics, 92 (2015), 86–101 | DOI
[4] Klein S. V., Koshurnikov D. N., “Otsenka shumovoi ekspozitsii i svyazannogo s nei riska zdorovyu naseleniya, prozhivayuschego v zone vliyaniya aeroporta”, Izv. Samar. nauch. tsentra RAN, 15:3(6) (2013), 1806–1812
[5] Krasnov V. M., Drobzheva Ya. V., Maslov A. N., “Akusticheskoe pole na zemle pri vzryve rakety-nositelya”, Vestn. NYaTs, 2006, no. 2, 79–85
[6] Orlov S. A., Matematicheskoe modelirovanie protsessov aerodinamiki v lesnykh massivakh i nasazhdeniyakh, Dis. ... kand. fiz.-mat. nauk, Tomsk, 2012
[7] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973
[8] V. V. Gubarev et al., “Prediction of environmental risks from explosions based on a set of coupled geophysical fields”, Optoelectronics, Instrumentation and Data Processing, 50:4 (2014), 3–13 | DOI
[9] Khairetdinov M., Kovalevsky V., Voskoboinikova G., Sedukhina G., “Vibroseismoacoustic method in studying of geophysical fields interaction in ground atmosphere”, Proc. 14 Internat. Multidisciplinary Scientific Geoconference «Informatics, GeoInformatics and Remote Sensing SGEM-2014» (Albena, 2014), v. 1, 925–931
[10] Sitnik B. B., “Modelirovanie vliyaniya massiva rastitelnosti na rasprostranenie akusticheskikh vozmuschenii”, Mat. modelirovanie, 19:8 (2007), 90–96 | Zbl
[11] Chobeau P., Modeling of Sound Propagation in Forests Using the Transmission Line Matrix Method. Study of Multiple Scattering and Ground Effects Related to Forests, Univ. du Maine, Le Mans, 2014
[12] Johansson E., The Sound Amplifying Forest with Emphasis on Sounds from Wind Turbines, Chalmers Univ. of Technology, 2010
[13] A.S. Alekseev i dr., “Effekt akustoseismicheskoi induktsii pri vibroseismicheskom zondirovanii”, Dokl. AN, 346:5 (1996), 664–667
[14] Mikhailenko B. G., Mikhailov A. A., “Numerical modeling of seismic and acoustic-gravity waves propagation in an «earth-atmosphere» model in the presence of wind in the air”, Numer. Analysis and Applications, 7:2 (2014), 124–135 | DOI | MR | Zbl
[15] Komatitsch D., Tromp J., “A perfectly matched layer (PML) absorbing condition for the second-order elastic wave equation”, Geophys. J. Internat., 154 (2003), 146–153 | DOI
[16] Komatitsch D., Martin R., “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, Geophysics, 72 (2007), 155–167 | DOI
[17] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51 (1986), 889–901 | DOI
[18] Karavaev D. A., Glinsky B. M., Kovalevsky V. V., “A technology of 3D elastic wave propagation simulation using hybrid supercomputers”, Proc. 1 Russian Conf. on Supercomputing Days, CEUR Workshop, 1482, 2015, 26–33
[19] Yakimenko A. A., Morozov A. E., Karavaev D. A., “Practical aspects of using a neural network to solve inverse geophysical problems”, IOP Conf. J. Physics. Conf. Ser., 1015 (2018), 032148 | DOI