Radially symmetric solutions of the $p$-Laplace equation with gradient terms
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 121-136

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the $p$-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein–Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source.
Keywords: radially symmetric solution, Dirichlet problem, gradient nonlinearity.
Mots-clés : $p$-Laplace equation
@article{SJIM_2018_21_4_a9,
     author = {Ar. S. Tersenov},
     title = {Radially symmetric solutions of the $p${-Laplace} equation with gradient terms},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - Radially symmetric solutions of the $p$-Laplace equation with gradient terms
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 121
EP  - 136
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/
LA  - ru
ID  - SJIM_2018_21_4_a9
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T Radially symmetric solutions of the $p$-Laplace equation with gradient terms
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 121-136
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/
%G ru
%F SJIM_2018_21_4_a9
Ar. S. Tersenov. Radially symmetric solutions of the $p$-Laplace equation with gradient terms. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 121-136. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/