Radially symmetric solutions of the $p$-Laplace equation with gradient terms
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the $p$-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein–Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source.
Keywords: radially symmetric solution, Dirichlet problem, gradient nonlinearity.
Mots-clés : $p$-Laplace equation
@article{SJIM_2018_21_4_a9,
     author = {Ar. S. Tersenov},
     title = {Radially symmetric solutions of the $p${-Laplace} equation with gradient terms},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - Radially symmetric solutions of the $p$-Laplace equation with gradient terms
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 121
EP  - 136
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/
LA  - ru
ID  - SJIM_2018_21_4_a9
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T Radially symmetric solutions of the $p$-Laplace equation with gradient terms
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 121-136
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/
%G ru
%F SJIM_2018_21_4_a9
Ar. S. Tersenov. Radially symmetric solutions of the $p$-Laplace equation with gradient terms. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 121-136. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/

[1] Dall'Aglio A., Giachetti D., Segura de Leon S., “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR | Zbl

[2] Figueiredo D. G., Lions P. L., Nussbaum R. D., “A priori estimates and existence of positive solutions of semilinear elliptic equations”, J. Math. Pures Appl., 61 (1982), 41–63 | MR | Zbl

[3] Figueiredo D. G., Sanchez J., Ubilla P., “Quasilinear equations with dependence on the gradient”, Nonlinear Anal., 71 (2009), 4862–4868 | DOI | MR | Zbl

[4] Iturriaga L., Lorca S., Sanchez J., “Existence and multiplicity results for the $p$-Laplacian with a $p$-gradient term”, Nonlinear Differential Equations Appl., 15 (2008), 729–743 | DOI | MR | Zbl

[5] Jinkai Li, Jingxue Yin, Yuanyuan Ke, “Existence of positive solutions for the $p$-Laplacian with $p$-gradient term”, J. Math. Anal. Appl., 383 (2011), 147–158 | DOI | MR | Zbl

[6] Montenegro M., “Existence and nonexistence of solutions for quasilinear elliptic equations”, J. Math. Anal. Appl., 245 (2000), 303–316 | DOI | MR | Zbl

[7] Nakao M., Chen C., “Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term”, J. Differential Equations, 162 (2000), 224–250 | DOI | MR | Zbl

[8] Ruiz D., “A priori estimates and existence of positive solutions for strongly nonlinear problems”, J. Differential Equations, 199 (2004), 96–114 | DOI | MR | Zbl

[9] Tersenov Al. S., “The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations”, Ann. Inst. Henry Poincaré. Anal. Non Linéaire, 21 (2004), 533–541 | DOI | MR | Zbl

[10] Wang X. J., Deng Y. B., “Existence of multiple solutions to nonlinear elliptic equations of nondivergence form”, J. Math. Anal. Appl., 189 (1995), 617–630 | DOI | MR | Zbl

[11] Zou H. H., “A priori estimates and existence for quasilinear elliptic equations”, Calc. Var. Partial Differential Equations, 33 (2008), 417–437 | DOI | MR | Zbl

[12] Cabre X., Capella A., Sanchon M., “Regularity of radial minimizers of reaction equations involving the $p$-Laplacian”, Calc. Var. Partial Differential Equations, 34:4 (2009), 475–494 | DOI | MR | Zbl

[13] Franca M., “Radial ground states and singular ground states for a spatial-dependent $p$-Laplace equation”, J. Differential Equations, 218 (2010), 2629–2656 | DOI | MR

[14] Franchi B., Lanconelli E., Serrin J., “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$”, Adv. Math., 118 (1996), 177–243 | DOI | MR | Zbl

[15] Garcia-Huidobro M., Manasevich R., Schmitt K., “Positive radial solutions of quasilinear elliptic partial differential equations on a ball”, Nonlinear Anal., 35 (1999), 175–190 | DOI | MR | Zbl

[16] Pucci P., Serrin J., “Uniqueness of ground states for quasilinear elliptic operators”, Indiana Univ. Math. J., 47 (1998), 501–528 | MR | Zbl

[17] Clapp M., Del Pino M., Musso M., “Multiple solutions for a non-homogeneous elliptic equation at the critical exponent”, Proc. Roy. Soc. Edinburgh A, 134:1 (2004), 69–87 | DOI | MR | Zbl

[18] Dai Qiuyi, Peng Lihui, “Necessary and sufficient conditions for existence of nonnegative solutions of inhomogenuous $p$-Laplace equation”, Acta Math. Sci. Ser. B, 27:1 (2007), 34–56 | DOI | MR | Zbl

[19] Dai Q., Yang J., “Positive solutions of inhomogeneous elliptic equations with indefinite data”, Nonlinear Anal., 58:5–6 (2004), 571–589 | DOI | MR | Zbl

[20] Tersenov Ar. S., “On existence of radially symmetric solutions for $p$-Laplace equation”, Nonlinear Anal., 95 (2014), 539–551 | DOI | MR

[21] Tersenov A. S., “O suschestvovanii radialno-simmetrichnykh reshenii zadachi Dirikhle dlya neodnorodnogo uravneniya $p$-laplasiana”, Sib. mat. zhurn., 57:5 (2016), 1171–1183 | MR | Zbl

[22] Tersenov Al. S., Tersenov Ar. S., “Global solvability for a class of quasilinear parabolic equations”, Indiana Univ. Math. J., 50:4 (2004), 1899–1913 | DOI | MR

[23] Tersenov Al. S., Tersenov Ar. S., “On the Bernstein–Nagumo's condition in the theory of nonlinear parabolic equations”, J. Reine Angew. Math., 572 (2004), 197–217 | MR | Zbl

[24] Tersenov Ar. S., “O razreshimosti nekotorykh kraevykh zadach dlya odnogo klassa kvazilineinykh parabolicheskikh uravnenii”, Sib. mat. zhurn., 40:5 (1999), 1147–1156 | MR | Zbl

[25] Tersenov Ar. S., “Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations”, Electron. J. Differential Equations, 2007 (2007), 57, 12 pp. | MR | Zbl

[26] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verl., Berlin–Heidelberg, 1983 | MR | Zbl