Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_4_a9, author = {Ar. S. Tersenov}, title = {Radially symmetric solutions of the $p${-Laplace} equation with gradient terms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {121--136}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/} }
TY - JOUR AU - Ar. S. Tersenov TI - Radially symmetric solutions of the $p$-Laplace equation with gradient terms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 121 EP - 136 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/ LA - ru ID - SJIM_2018_21_4_a9 ER -
Ar. S. Tersenov. Radially symmetric solutions of the $p$-Laplace equation with gradient terms. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 121-136. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a9/
[1] Dall'Aglio A., Giachetti D., Segura de Leon S., “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR | Zbl
[2] Figueiredo D. G., Lions P. L., Nussbaum R. D., “A priori estimates and existence of positive solutions of semilinear elliptic equations”, J. Math. Pures Appl., 61 (1982), 41–63 | MR | Zbl
[3] Figueiredo D. G., Sanchez J., Ubilla P., “Quasilinear equations with dependence on the gradient”, Nonlinear Anal., 71 (2009), 4862–4868 | DOI | MR | Zbl
[4] Iturriaga L., Lorca S., Sanchez J., “Existence and multiplicity results for the $p$-Laplacian with a $p$-gradient term”, Nonlinear Differential Equations Appl., 15 (2008), 729–743 | DOI | MR | Zbl
[5] Jinkai Li, Jingxue Yin, Yuanyuan Ke, “Existence of positive solutions for the $p$-Laplacian with $p$-gradient term”, J. Math. Anal. Appl., 383 (2011), 147–158 | DOI | MR | Zbl
[6] Montenegro M., “Existence and nonexistence of solutions for quasilinear elliptic equations”, J. Math. Anal. Appl., 245 (2000), 303–316 | DOI | MR | Zbl
[7] Nakao M., Chen C., “Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term”, J. Differential Equations, 162 (2000), 224–250 | DOI | MR | Zbl
[8] Ruiz D., “A priori estimates and existence of positive solutions for strongly nonlinear problems”, J. Differential Equations, 199 (2004), 96–114 | DOI | MR | Zbl
[9] Tersenov Al. S., “The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations”, Ann. Inst. Henry Poincaré. Anal. Non Linéaire, 21 (2004), 533–541 | DOI | MR | Zbl
[10] Wang X. J., Deng Y. B., “Existence of multiple solutions to nonlinear elliptic equations of nondivergence form”, J. Math. Anal. Appl., 189 (1995), 617–630 | DOI | MR | Zbl
[11] Zou H. H., “A priori estimates and existence for quasilinear elliptic equations”, Calc. Var. Partial Differential Equations, 33 (2008), 417–437 | DOI | MR | Zbl
[12] Cabre X., Capella A., Sanchon M., “Regularity of radial minimizers of reaction equations involving the $p$-Laplacian”, Calc. Var. Partial Differential Equations, 34:4 (2009), 475–494 | DOI | MR | Zbl
[13] Franca M., “Radial ground states and singular ground states for a spatial-dependent $p$-Laplace equation”, J. Differential Equations, 218 (2010), 2629–2656 | DOI | MR
[14] Franchi B., Lanconelli E., Serrin J., “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$”, Adv. Math., 118 (1996), 177–243 | DOI | MR | Zbl
[15] Garcia-Huidobro M., Manasevich R., Schmitt K., “Positive radial solutions of quasilinear elliptic partial differential equations on a ball”, Nonlinear Anal., 35 (1999), 175–190 | DOI | MR | Zbl
[16] Pucci P., Serrin J., “Uniqueness of ground states for quasilinear elliptic operators”, Indiana Univ. Math. J., 47 (1998), 501–528 | MR | Zbl
[17] Clapp M., Del Pino M., Musso M., “Multiple solutions for a non-homogeneous elliptic equation at the critical exponent”, Proc. Roy. Soc. Edinburgh A, 134:1 (2004), 69–87 | DOI | MR | Zbl
[18] Dai Qiuyi, Peng Lihui, “Necessary and sufficient conditions for existence of nonnegative solutions of inhomogenuous $p$-Laplace equation”, Acta Math. Sci. Ser. B, 27:1 (2007), 34–56 | DOI | MR | Zbl
[19] Dai Q., Yang J., “Positive solutions of inhomogeneous elliptic equations with indefinite data”, Nonlinear Anal., 58:5–6 (2004), 571–589 | DOI | MR | Zbl
[20] Tersenov Ar. S., “On existence of radially symmetric solutions for $p$-Laplace equation”, Nonlinear Anal., 95 (2014), 539–551 | DOI | MR
[21] Tersenov A. S., “O suschestvovanii radialno-simmetrichnykh reshenii zadachi Dirikhle dlya neodnorodnogo uravneniya $p$-laplasiana”, Sib. mat. zhurn., 57:5 (2016), 1171–1183 | MR | Zbl
[22] Tersenov Al. S., Tersenov Ar. S., “Global solvability for a class of quasilinear parabolic equations”, Indiana Univ. Math. J., 50:4 (2004), 1899–1913 | DOI | MR
[23] Tersenov Al. S., Tersenov Ar. S., “On the Bernstein–Nagumo's condition in the theory of nonlinear parabolic equations”, J. Reine Angew. Math., 572 (2004), 197–217 | MR | Zbl
[24] Tersenov Ar. S., “O razreshimosti nekotorykh kraevykh zadach dlya odnogo klassa kvazilineinykh parabolicheskikh uravnenii”, Sib. mat. zhurn., 40:5 (1999), 1147–1156 | MR | Zbl
[25] Tersenov Ar. S., “Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations”, Electron. J. Differential Equations, 2007 (2007), 57, 12 pp. | MR | Zbl
[26] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verl., Berlin–Heidelberg, 1983 | MR | Zbl