Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_4_a7, author = {V. G. Romanov and T. V. Bugueva and V. A. Dedok}, title = {Regularization of the solution of the {Cauchy} problem: the quasi-reversibility method}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {96--109}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a7/} }
TY - JOUR AU - V. G. Romanov AU - T. V. Bugueva AU - V. A. Dedok TI - Regularization of the solution of the Cauchy problem: the quasi-reversibility method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 96 EP - 109 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a7/ LA - ru ID - SJIM_2018_21_4_a7 ER -
%0 Journal Article %A V. G. Romanov %A T. V. Bugueva %A V. A. Dedok %T Regularization of the solution of the Cauchy problem: the quasi-reversibility method %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 96-109 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a7/ %G ru %F SJIM_2018_21_4_a7
V. G. Romanov; T. V. Bugueva; V. A. Dedok. Regularization of the solution of the Cauchy problem: the quasi-reversibility method. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 96-109. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a7/
[1] John F., “Continuous dependence on data for solutions of partial differential equations with a prescribed bound”, Comm. Pure Appl. Math., 13:4 (1960), 551–585 | DOI | MR | Zbl
[2] John F., Differential Equations with Approximate and Improper Data, Lectures, New York Univ., N.Y., 1995
[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[4] Romanov V. G., Nekotorye obratnye zadachi dlya uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1972
[5] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980
[6] Finch D., Patch S. K., Rakesh, “Determining a function from its mean values over a family of spheres”, SIAM J. Math. Anal., 35:5 (2004), 1213–1240 | DOI | MR | Zbl
[7] Natterer F., “Photo-acoustic inversion in convex domains”, Inverse Probl. Imaging, 6:2 (2012), 1–6 | DOI | MR
[8] Palamodov V. P., “Reconstruction from limited data of arc means”, J. Fourier Anal. Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl
[9] Symes W. W., “A trace theorem for solutions of the wave equation, and the remote qdetermination of acoustic sources”, Math. Meth. Appl. Sci., 5 (1983), 131–152 | DOI | MR | Zbl
[10] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970
[11] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Inst. Math. Sci., N.Y., 1974 | MR | Zbl
[12] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkalakh banakhovykh prostranstv”, Dokl. AN SSSR, 200:4 (1971), 789–792 | MR | Zbl
[13] Romanov V. G., “O lokalnoi razreshimosti nekotorykh mnogomernykh obratnykh zadach dlya uravnenii giperbolicheskogo tipa”, Differents. uravneniya, 25:2 (1989), 275–283 | MR | Zbl
[14] Romanov V. G., “O chislennom metode resheniya odnoi obratnoi zadachi dlya giperbolicheskogo uravneniya”, Sib. mat. zhurn., 37:3 (1996), 633–655 | MR | Zbl
[15] Romanov V. G., “Lokalnyi variant chislennogo metoda resheniya obratnoi zadachi”, Sib. mat. zhurn., 37:4 (1996), 904–918 | MR | Zbl
[16] Smirnov V. I., Kurs vysshei matematiki, v. II, Fizmatgiz, M., 1961
[17] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR