On the robust stability of solutions to periodic systems of neutral type
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 86-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is some class of linear systems of neutral type with periodic coefficients. We obtain the conditions on perturbations of the coefficients which preserve the exponential stability of the zero solution. Using a special Lyapunov–Krasovskii functional, we establish some estimates that characterize the rate of exponential decay at infinity of the solutions of the perturbed systems.
Keywords: systems of neutral type, periodic coefficients, exponential stability, Lyapunov–Krasovskii functional.
@article{SJIM_2018_21_4_a6,
     author = {I. I. Matveeva},
     title = {On the robust stability of solutions to periodic systems of neutral type},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--95},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/}
}
TY  - JOUR
AU  - I. I. Matveeva
TI  - On the robust stability of solutions to periodic systems of neutral type
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 86
EP  - 95
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/
LA  - ru
ID  - SJIM_2018_21_4_a6
ER  - 
%0 Journal Article
%A I. I. Matveeva
%T On the robust stability of solutions to periodic systems of neutral type
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 86-95
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/
%G ru
%F SJIM_2018_21_4_a6
I. I. Matveeva. On the robust stability of solutions to periodic systems of neutral type. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 86-95. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/

[1] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[3] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Naukova dumka, Kiev, 1989

[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[5] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional Differential Equations, Math. Appl., 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[6] Gu K., Kharitonov V. L., Chen J., Stability of Time-Delay Systems, Control Engineering, Birkhäuser, Boston, 2003 | MR | Zbl

[7] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation Theory of Functional Differential Equations with Applications, Springer-Verl., N.Y., 2012 | MR | Zbl

[8] Gil' M. I., Stability of Neutral Functional Differential Equations, Atlantis Stud. Differential Equations, 3, Atlantis Press, Paris, 2014 | DOI | MR | Zbl

[9] Kuang Y., Delay differential equations with applications in population dynamics, Math. Sci. Engrg., 191, Acad. Press, Boston, 1993 | MR | Zbl

[10] Erneux T., Applied Delay Differential Equations, Surv. Tutor. Appl. Math. Sci., 3, Springer-Verl., N.Y., 2009 | MR | Zbl

[11] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl

[12] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zhurn. industr. matematiki, 16:3 (2013), 122–132 | MR | Zbl

[13] Demidenko G. V., Matveeva I. I., “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 55:5 (2014), 1059–1077 | MR

[14] Demidenko G. V., Matveeva I. I., “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equations, 2015:83 (2015), 1–22 | DOI | MR

[15] Matveeva I. I., “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa”, Sib. mat. zhurn., 58:2 (2017), 344–352 | DOI | MR | Zbl

[16] Andreev A. S., “Metod funktsionalovLyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4–55 | MR | Zbl

[17] Fridman E., “Tutorial on Lyapunov-based methods for time-delay systems”, Eur. J. Control, 20 (2014), 271–283 | DOI | MR | Zbl

[18] Kharitonov V. L., Time-Delay Systems. Lyapunov Functionals and Matrices, Control Engineering, Birkhäuser, N.Y., 2013 | MR | Zbl

[19] Khusainov D. Ya., Kozhametov A. T., “Skhodimost reshenii neavtonomnykh sistem neitralnogo tipa”, Izv. vuzov. Matematika, 2006, no. 1, 68–72 | MR | Zbl

[20] Domoshnitsky A., Gitman M., Shklyar R., “Stability and estimate of solution to uncertain neutral delay systems”, Bound. Value Probl., 2014:55 (2014), 1–14 | MR

[21] Alaviani S. Sh., “A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems”, J. Frankl. Inst., 351 (2014), 2574–2581 | DOI | MR | Zbl

[22] Romanovskii R. K., Belgart L. V., Dobrovolskii S. M., Rogozin A. V., Trotsenko G. A., Metod funktsii Lyapunova dlya pochti periodicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 2015

[23] Demidenko G. V., Matveeva I. I., “O robastnoi ustoichivosti reshenii lineinykh differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. zhurn. industr. matematiki, 18:4 (2015), 18–29 | DOI | MR | Zbl

[24] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28 | Zbl

[25] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl