On the robust stability of solutions to periodic systems of neutral type
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 86-95

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is some class of linear systems of neutral type with periodic coefficients. We obtain the conditions on perturbations of the coefficients which preserve the exponential stability of the zero solution. Using a special Lyapunov–Krasovskii functional, we establish some estimates that characterize the rate of exponential decay at infinity of the solutions of the perturbed systems.
Keywords: systems of neutral type, periodic coefficients, exponential stability, Lyapunov–Krasovskii functional.
@article{SJIM_2018_21_4_a6,
     author = {I. I. Matveeva},
     title = {On the robust stability of solutions to periodic systems of neutral type},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--95},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/}
}
TY  - JOUR
AU  - I. I. Matveeva
TI  - On the robust stability of solutions to periodic systems of neutral type
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 86
EP  - 95
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/
LA  - ru
ID  - SJIM_2018_21_4_a6
ER  - 
%0 Journal Article
%A I. I. Matveeva
%T On the robust stability of solutions to periodic systems of neutral type
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 86-95
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/
%G ru
%F SJIM_2018_21_4_a6
I. I. Matveeva. On the robust stability of solutions to periodic systems of neutral type. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 86-95. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a6/