Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_4_a1, author = {V. I. Vasil'ev and M. V. Vasil'eva and V. S. Gladkikh and V. P. Ilin and D. Ya. Nikiforov and D. V. Perevozkin and G. A. Prokop'ev}, title = {Numerical solution of a~fluid filtration problem in a~fractured medium by using the domain decomposition method}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {15--27}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a1/} }
TY - JOUR AU - V. I. Vasil'ev AU - M. V. Vasil'eva AU - V. S. Gladkikh AU - V. P. Ilin AU - D. Ya. Nikiforov AU - D. V. Perevozkin AU - G. A. Prokop'ev TI - Numerical solution of a~fluid filtration problem in a~fractured medium by using the domain decomposition method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 15 EP - 27 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a1/ LA - ru ID - SJIM_2018_21_4_a1 ER -
%0 Journal Article %A V. I. Vasil'ev %A M. V. Vasil'eva %A V. S. Gladkikh %A V. P. Ilin %A D. Ya. Nikiforov %A D. V. Perevozkin %A G. A. Prokop'ev %T Numerical solution of a~fluid filtration problem in a~fractured medium by using the domain decomposition method %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 15-27 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a1/ %G ru %F SJIM_2018_21_4_a1
V. I. Vasil'ev; M. V. Vasil'eva; V. S. Gladkikh; V. P. Ilin; D. Ya. Nikiforov; D. V. Perevozkin; G. A. Prokop'ev. Numerical solution of a~fluid filtration problem in a~fractured medium by using the domain decomposition method. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 4, pp. 15-27. http://geodesic.mathdoc.fr/item/SJIM_2018_21_4_a1/
[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. matematika i mekhanika, 24:5 (1960), 852–864 | Zbl
[2] Akkutlu I. Y., Efendiev Y., Vasilyeva M., “Multiscale model reduction for shale gas transport in fractured media”, Comput. Geosciences, 20:5 (2016), 953–973 | DOI | MR | Zbl
[3] Chung E. T., Efendiev Y., Leung T., Vasilyeva M., “Coupling of multiscale and multi-continuum approaches”, GEM-Internat J. Geomathematics, 8:1 (2017), 9–41 | DOI | MR | Zbl
[4] Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media”, J. Natural Gas Sci. Engrg., 48 (2017), 65–76 | DOI
[5] Yalchin Efendiev, Seong Lee, Guanglian Li, Jun Yao, Na Zhang, “Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method”, GEM-Internat. J. Geomathematics, 6:2 (2015), 141–162 | DOI | MR | Zbl
[6] Snow D. T., “Rock fracture spacings, openings, and porosities”, J. Soil Mech. Found. Div., 94 (1968), 73–92
[7] Noorishad J., Mehran M., “An upstream finite element method for solution of transient transport equation in fractured porous media”, Water Resour. Res., 18 (1982), 588–596 | DOI
[8] Kim J., Deo M. D., “Comparison of the performance of a discrete fracture multiphase model with those using conventionalmethods”, SPE Symposium on Reservoir Simulation, Houston, 1999, 359–371
[9] Kim J., Deo M. D., “Finite element, discrete-fracture model for multiphase flow in porous media”, AIChE J., 46 (2000), 1120–1130 | DOI
[10] Baca R., Arnett R., Langford D., “Modeling fluid flow in fractured porous rock masses by finite element techniques”, Internat. J. Numer. Methods in Fluids, 4 (1984), 337–348 | DOI | Zbl
[11] Huang Z., Yao J., Wang Y., Tao K., “Numerical study on two-phase flow through fractured porous media”, Science China Technological Sciences, 54 (2011), 2412–2420 | DOI | Zbl
[12] Yu-Shu Wu, Qin G., Ewing R. E., Efendiev Y., Kang Z., Ren Y., “A multiple-continuum approach for modeling multiphase flow in naturally fractured vuggy petroleum reservoirs”, Internat. Oil and Gas Conf. and Exhibition in China, v. 2, Beijing, 2006, 739–750
[13] Dershowitz W. S., La Pointe P. R., Doe T. W., “Advances in discrete fracture network modeling”, Proc. US EPA/NGWA Fractured Rock Conf., Portland, 2004, 882–894
[14] Vasilev V. I., Vasileva M. V., Laevskii Yu. M., Timofeeva T. S., “Chislennoe modelirovanie filtratsii dvukhfaznoi zhidkosti v geterogennykh sredakh”, Sib. zhurn. industr. matematiki, 20:2 (2017), 33–40 | DOI
[15] Karimi-Fard M. M., Firoozabadi A., “Numerical simulation of water injection in 2d fractured media using discrete-fracture model”, SPE REE J., 4 (2003), 117–126
[16] Dolean V., Jolivet P., Nataf F., An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementataion, SIAM, Philadelphia, 2015 | MR
[17] Butyugin D. S., Ilin V. P., Perevozkin D. V., “Metody parallelnogo resheniya SLAU na sistemakh s raspredelennoi pamyatyu v biblioteke KRYLOV”, Vestn. YuUrGU. Ser. Vychislitelnaya matematika i informatika, 2012, no. 47(306), 22–36
[18] Butyugin D. S., Gureva Ya. L., Ilin V. P., Perevozkin D. V., Petukhov A. V., Skopin I. N., “Funktsionalnost i tekhnologii algebraicheskikh reshatelei v biblioteke KRYLOV”, Vestn. YuUrGU. Ser. Vychislitelnaya matematika i informatika, 2:3 (2013), 92–105
[19] Ilin V. P., “O metodakh nepolnoi faktorizatsii dlya resheniya parabolicheskikh uravnenii”, Dokl. AN SSSR, 318:6 (1991), 1304–1308 | MR | Zbl
[20] Langtangen H. P., Logg A., Solving PDEs in Python, The FEniCS Tutorial, v. I, Springer-Verl., 2016 | MR | Zbl
[21] Li J., Lei Z., Qin G., Gong B., “Effective local-global upscaling of fractured reservoirs under discrete fractured discretization”, Energies, 8:9 (2015), 10178–10197 | DOI
[22] Geuzaine C., Remacle J.-F., “Gmsh: a three-dimensional finite element mesh generator with built in pre- and post-processing facilities”, Internat. J. Numer. Methods in Engrg., 79:11 (2009), 1309–1331 | DOI | MR | Zbl
[23] URL: https://www.s-vfu.ru/universitet/rukovodstvo-i-struktura/instituty/imi/nik_vt/cluster.php
[24] Vincent M., Jaffré J., Roberts J. E., “Modeling fractures and barriers as interfaces for flow in porous media”, SIAM J. Scientific Computing, 26:5 (2005), 1667–1691 | DOI | MR | Zbl
[25] Yao J., Huang Z., Li Y., Wang C., Lv X., “Discrete fracture-vug network model for modeling fluid flow in fractured vuggy porous media”, Internat. Oil and Gas Conf. and Exhibition in China, Society of Petroleum Engineers, Beijing, 2010, 320–333
[26] Akkutlu I. Y., Efendiev Y., Vasilyeva M., “Multiscale model reduction for shale gas transport in fractured media”, Comput. Geosciences, 20:5 (2016), 953–973 | DOI | MR | Zbl
[27] Vasilyeva M., Chung E. T., Leung W. T., Alekseev V., Nonlocal multicontinuum (NLMC) upscaling of mixed dimensional coupled flow problem for embedded and discrete fracture models, arXiv preprint, 2018, arXiv: 1805.09407
[28] Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in poroelastic fractured media”, J. Comput. Physics, 353 (2018), 356–376 | DOI | MR | Zbl
[29] Bukac M., Yotov I., Zunino P., “Dimensional model reduction for flow through fractures in poroelastic media”, ESAIM: Mathematical Modelling and Numerical Analysis, 51:4 (2017), 1429–1471 | MR | Zbl
[30] Chen Z., Huan G., Ma Y., Computational Methods for Multiphase Flows in Porous Media, SIAM, 2006 | MR | Zbl