Free cavitational deceleration of a~circular cylinder in a~liquid after impact
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 94-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered about the vertical continuous impact and subsequent free deceleration of a circular cylinder semi-immersed in a liquid. The specificity of this problem is that, under certain conditions, some areas of low pressure near the body appear and the attached cavities are formed. The separation zones and the motion law of the cylinder are unknown in advance and have to be determined in solving the problem. The study of the problem is conducted by a direct asymptotic method effective for small spans of time. Some nonlinear problem with unilateral constraints is formulated that is solved together with the equation defining the law of motion of the cylinder. In the case when the space above the external free surface of a liquid is filled with a gas with low pressure (vacuum), an analytical solution of the problem is constructed. To determine the main hydrodynamic characteristics (the separation point and acceleration of the cylinder), we derive a system of transcendental equations with elementary functions. The solution of this system agrees well with the results obtained by the direct numerical method.
Keywords: incompressible ideal liquid, circular cylinder, impact, free cavitational deceleration, free boundary, cavern, small spans of time, Froude number.
@article{SJIM_2018_21_3_a8,
     author = {M. V. Norkin},
     title = {Free cavitational deceleration of a~circular cylinder in a~liquid after impact},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a8/}
}
TY  - JOUR
AU  - M. V. Norkin
TI  - Free cavitational deceleration of a~circular cylinder in a~liquid after impact
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 94
EP  - 103
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a8/
LA  - ru
ID  - SJIM_2018_21_3_a8
ER  - 
%0 Journal Article
%A M. V. Norkin
%T Free cavitational deceleration of a~circular cylinder in a~liquid after impact
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 94-103
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a8/
%G ru
%F SJIM_2018_21_3_a8
M. V. Norkin. Free cavitational deceleration of a~circular cylinder in a~liquid after impact. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 94-103. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a8/

[1] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1966

[2] Norkin M. V., “Obrazovanie kaverny pri naklonnom otryvnom udare krugovogo tsilindra pod svobodnoi poverkhnostyu tyazheloi zhidkosti”, Sib. zhurn. industr. matematiki, 19:4 (2016), 81–92 | MR | Zbl

[3] Norkin M. V., “Kavitatsionnoe tormozhenie krugovogo tsilindra v zhidkosti posle udara”, Prikl. mekhanika i tekhn. fizika, 58:1 (2017), 102–107 | MR | Zbl

[4] Norkin M. V., “Kavitatsionnoe tormozhenie tverdogo tela v vozmuschennoi zhidkosti”, Nelineinaya dinamika, 13:2 (2017), 181–193 | MR

[5] Reinhard M., Korobkin A. A., Cooker M.-J., “Cavity formation on the surface of a body entering water with deceleration”, J. Engrg Math., 96:1 (2016), 155–174 | DOI | MR | Zbl

[6] Virchenko N. A., Parnye (troinye) integralnye uravneniya, Vyscha shkola, Kiev, 1989

[7] Mandal B. N., Mandal N., Advances in Dual Integral Equations, Chapman Hall/CRC Press, Boca Raton, 1999 | MR | Zbl

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974

[9] Zhukov M. Yu., Shiryaeva E. V., Ispolzovanie paketa konechnykh elementov FreeFem++ dlya zadach gidrodinamiki, elektroforeza i biologii, Izd-vo YuFU, Rostov n/D, 2008

[10] Dvorak A. V., Teselkin D. A., “Chislennoe issledovanie dvumernykh zadach ob impulsivnom dvizhenii plavayuschikh tel”, Zhurn. vychisl. matematiki i mat. fiziki, 26:1 (1986), 144–150 | Zbl

[11] Aleksandrov V. M., Chebakov M. I., Analiticheskie metody v kontaktnykh zadachakh teorii uprugosti, Fizmatlit, M., 2004