Biot stress and strain in thin-plate theory for large deformations
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a theory of nonlinear deformation of a plate on the basis of an energetically conjugate pair of the Biot stress tensors and the right stretch tensor. When the dimensionality of the problem is reduced from three to two, the classical Kirchhoff conjectures are used, the linear part is retained in the expansion of the right stretch tensor with respect to a degenerate coordinate, and no additional simplifications are assumed. Connection is obtained between the asymmetric and symmetric components of the Biot tensor; the equivalence is demonstrated of the virtual work principle with the equilibrium equations, the natural boundary conditions, and additional conditions for the dependence of asymmetric stress moment resultants on symmetric moments.
Keywords: geometrically nonlinear theory, plate, Biot stress tensor, right stretch tensor.
@article{SJIM_2018_21_3_a7,
     author = {V. B. Myntiuk},
     title = {Biot stress and strain in thin-plate theory for large deformations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a7/}
}
TY  - JOUR
AU  - V. B. Myntiuk
TI  - Biot stress and strain in thin-plate theory for large deformations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 84
EP  - 93
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a7/
LA  - ru
ID  - SJIM_2018_21_3_a7
ER  - 
%0 Journal Article
%A V. B. Myntiuk
%T Biot stress and strain in thin-plate theory for large deformations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 84-93
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a7/
%G ru
%F SJIM_2018_21_3_a7
V. B. Myntiuk. Biot stress and strain in thin-plate theory for large deformations. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 84-93. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a7/

[1] Biot M. A., Mechanics of Incremental Deformations, John Wiley Sons, New York–London–Sydney, 1965

[2] Khill R., “Ob opredelyayuschikh neravenstvakh dlya prostykh materialov”, Mekhanika, 1969, no. 4(116), 94–109

[3] Novozhilov V. V., Chernykh K. F., “Ob “istinnykh” merakh napryazhenii i deformatsii v nelineinoi mekhanike deformiruemogo tela”, Mekhanika tverdogo tela, 1987, no. 4, 191–197

[4] Chernykh K. F., Vvedenie v fizicheski i geometricheski nelineinuyu teoriyu treschin, Fizmatlit, M., 1996

[5] Khalilov S. A., Mintyuk V. B., “Analiz zakriticheskogo povedeniya gibkikh uprugikh ram”, Sib. zhurn. industr. matematiki, 21:1(73) (2018), 105–117 | MR

[6] Zubov L. M., Metody nelineinoi teorii uprugosti v teorii obolochek, Izd-vo Rostov. gos. un-ta, Rostov, 1982

[7] Simmonds J. G., Danielson D. A., “Nonlinear shell theory with finite rotations and stress-function vectors”, J. Appl. Mech. Ser. E, 39 (1972), 1085–1090 | DOI | Zbl

[8] Alumyae N. A., “O predstavlenii osnovnykh sootnoshenii nelineinoi teorii obolochek”, Prikl. matematika i mekhanika, 20:1 (1956), 136–139 | MR

[9] Pietraszkiewicz W., “Geometrically nonlinear theories of thin elastic shells”, Adv. Mech., 12:1 (1989), 51–130 | MR

[10] Libai A., Simmonds J. G., The Nonlinear Theory of Elastic Shells, Univ. Press, Cambridge, 1998 | MR | Zbl

[11] Fraelis De Veubeke B., “New variational principle for finite elastic displacements”, Int. J. Engrg Sci., 10 (1972), 745–763 | DOI | MR

[12] Atluri S. N., “Alternate stress and conjugate strain measures and mixed variational formulations involving rigid rotations for computational analyses of finitely deformed solids with application to plates and shells”, Comput. Struct., 18:1 (1983), 93–116 | DOI | MR

[13] Wisniewski K., “A shell theory with independent rotations for relaxed Biot stress and right stretch strain”, Comput. Mech., 21 (1998), 101–122 | DOI | Zbl

[14] Neff P., Fischle A., Munch I., “Symmetric Cauchy stresses do not imply symmetric Biot strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom”, Acta Mech., 197 (2008), 19–30 | DOI | Zbl

[15] Alumyae N. A., “Differentsialnye uravneniya sostoyanii ravnovesiya tonkostennykh uprugikh obolochek v poslekriticheskoi stadii”, Prikl. matematika i mekhanika, 13:1 (1949), 95–106 | MR | Zbl

[16] Atluri S. N., Iura M., Suetake Y., “A consistent theory of, and a variational principle for, thick elastic shells undergoing finite rotations”, Adv. Mech. Plates and Shells, The Avinoam Libai Anniversary Volume, Kluwer Acad. Publ., Hingham, 2001, 17–32

[17] Bufler H., “The Biot stresses in nonlinear elasticity and the associated generalized variational principles”, Ingenieur-Archiv, 55 (1985), 450–462 | DOI | Zbl

[18] Novozhilov V. V., Teoriya tonkikh obolochek, Sudpromgiz, L., 1962 | MR

[19] Pietraszkiewicz W., Konopińska V., “Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells”, Int. J. Solids Struct., 51 (2014), 2133–2143 | DOI

[20] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987

[21] Koiter W. T., On the complementary energy theorems in nonlinear elasticity theory, Report No. WTHD72, Dept. of Mech. Engrg., Delft, 1975

[22] Dill E. H., “The complementary energy principle in nonlinear elasticity”, Lett. Appl. Engrg. Sci., 5 (1977), 95–106

[23] Chernykh K. F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986