Reconstruction of permittivity from the modulus of a~scattered electric field
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a numerical algorithm for determining the inhomogeneities of permittivity from the strength modulus of a scattered electric field. The algorithm was tested on simulated noisy data and revealed its practical operability.
Keywords: phase-free inverse problem, Maxwell's equations, permittivity, residual functional.
@article{SJIM_2018_21_3_a4,
     author = {A. L. Karchevsky and V. A. Dedok},
     title = {Reconstruction of permittivity from the modulus of a~scattered electric field},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a4/}
}
TY  - JOUR
AU  - A. L. Karchevsky
AU  - V. A. Dedok
TI  - Reconstruction of permittivity from the modulus of a~scattered electric field
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 50
EP  - 59
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a4/
LA  - ru
ID  - SJIM_2018_21_3_a4
ER  - 
%0 Journal Article
%A A. L. Karchevsky
%A V. A. Dedok
%T Reconstruction of permittivity from the modulus of a~scattered electric field
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 50-59
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a4/
%G ru
%F SJIM_2018_21_3_a4
A. L. Karchevsky; V. A. Dedok. Reconstruction of permittivity from the modulus of a~scattered electric field. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 3, pp. 50-59. http://geodesic.mathdoc.fr/item/SJIM_2018_21_3_a4/

[1] Chadan K., Sabatier P. C., Inverse Problems in Quantum Scattering Theory, Springer-Verl., N.Y., 1977 | MR | Zbl

[2] Newton R. G., Inverse Schrödinger Scattering in Three Dimensions, Springer-Verl., N.Y., 1989 | MR | Zbl

[3] Klibanov M. V., “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl

[4] Klibanov M. V., “On the first solution of a long standing problem: Uniqueness of the phaseless quantum inverse scattering problem in 3-d”, Appl. Math. Lett., 37 (2014), 82–85 | DOI | MR | Zbl

[5] Klibanov M. V., “Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-d”, Appl. Anal., 93 (2014), 1135–1149 | DOI | MR | Zbl

[6] Klibanov M. V., “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl

[7] Klibanov M. V., “Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-d”, Applicable Anal., 93:6 (2014), 1135–1149 | DOI | MR | Zbl

[8] Klibanov M. V., Kamburg V. G., “Uniqueness of a one-dimensional phase retrieval problem”, Inverse Problems, 30 (2014), 075004, 10 pp. | DOI | MR | Zbl

[9] Klibanov M. V., “On the first solution of a long standing problem: Uniqueness of the phaseless quantum inverse scattering problem in 3-d”, Appl. Math. Lett., 37 (2014), 82–85 | DOI | MR | Zbl

[10] Klibanov M. V., “A phaseless inverse scattering problem for the 3-D Helmholtz equation”, Inverse Problems and Imaging, 11:2 (2017), 263–276 | DOI | MR | Zbl

[11] Klibanov M. V., Romanov V. G., “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation”, J. Inverse Ill-Posed Probl., 23:4 (2015), 415–428 | DOI | MR | Zbl

[12] Klibanov M. V., Romanov V. G., “Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: the plane wave case”, Eurasian J. Math. Computer Appl., 3:1 (2015), 48–63 | MR

[13] Klibanov M. V., Romanov V. G., “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information”, Inverse Problems, 33 (2017), 095007, 10 pp. | DOI | MR | Zbl

[14] Novikov R. G., “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions”, J. Geom. Anal., 26:1 (2016), 346–359. | DOI | MR | Zbl

[15] Novikov R. G., “Formulas for phase recovering from phaseless scattering data at fixed frequency”, Bull. Sci. Math., 139:8 (2015), 923–936. | DOI | MR | Zbl

[16] Klibanov M. V., Romanov V. G., “Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nanostructures”, J. Inverse Ill-Posed Probl., 23:2 (2015), 187–193 | DOI | MR | Zbl

[17] Romanov V. G., “Some geometric aspects in inverse problems”, Eurasian J. Math. Computer Appl., 3:4 (2015), 68–84

[18] Klibanov M. V., Romanov V. G., “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl

[19] Klibanov M. V., Romanov V. G., “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Probl., 32:2 (2016), 015005, 16 pp. | DOI | MR | Zbl

[20] Romanov V. G., “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektricheskogo polya”, Sib. mat. zhurn., 58:4 (2017), 916–924 | MR | Zbl

[21] Romanov V. G., “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti v statsionarnoi sisteme uravnenii Maksvella”, Dokl. RAN, 474:4 (2017), 413–417 | DOI | Zbl

[22] Romanov V. G., “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638 | Zbl

[23] Klibanov M. V., Nguyen D.-L., Nguyen L. H., Liu H., A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data, 13 Dec. 2016, arXiv: 1612.04014v1[math.NA] | MR

[24] Klibanov M. V., Nguyen L. H., Pan K., “Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase information”, Appl. Numer. Math., 110 (2016), 190–203 | DOI | MR | Zbl

[25] Klibanov M. V., Nguyen D.-L., Nguyen L. H., A coefficient inverse problem with a single measurement of phaseless scattering data, 13 Oct. 2017, arXiv: 1710.04804v1[math.NA]

[26] Kolesov A. E., Klibanov M. V., Nguyen L. H., Nguyen D.-L., Thành N. T., “Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method”, Appl. Numer. Math., 120 (2017), 176–196 | DOI | MR | Zbl

[27] Nguyen D.-L., Klibanov M. V., Nguyen L. H., Kolesov A. E., Fiddy A. E., Liu H., “Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm”, J. Comput. Phys., 345 (2017), 17–32 | DOI | MR | Zbl

[28] Nguyen D.-L., Klibanov M. V., Nguyen L. H., Fiddy M. A., “Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method”, J. Inverse Ill-Posed Probl., 26:4 (2018), 501–522 | DOI | MR | Zbl

[29] Beilina L., Klibanov M. V., “A globally convergent numerical method for a coefficient inverse problem”, SIAM J. Sci. Comput., 31:1 (2008), 478–509 | DOI | MR | Zbl

[30] Beilina L., Klibanov M. V., “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse Ill-Posed Probl., 20:4 (2012), 513–565 | DOI | MR | Zbl

[31] Beilina L., Klibanov M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer-Verl., N.Y., 2012 | Zbl

[32] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[33] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973

[34] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR

[35] Sovremennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[36] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[37] Karchevsky A. L., “Simultaneous reconstruction of permittivity and conductivity”, J. Inverse and Ill-Posed Probl., 17:4 (2009), 385–402 | DOI | MR

[38] Karchevskii A. L., “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Dokl. RAN, 375:2 (2000), 235–238 | Zbl

[39] Kurpinar E., Karchevsky A. L., “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976 | DOI | MR | Zbl

[40] Karchevsky A. L., “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, J. Inverse and Ill-Posed Probl., 12:5 (2004), 519–634 | DOI | MR

[41] Karchevsky A. L., “Reconstruction of pressure velocities and boundaries of thin layers in thinlystratified layers”, J. Inverse Ill-Posed Probl., 18:4 (2010), 371–388 | DOI | MR | Zbl

[42] Nazarov L. A., Nazarova L. A., Karchevskii A. L., Panov A. V., “Otsenka napryazhenii deformatsionnykh svoistv porodnykh massivov na osnove resheniya obratnoi zadachi po dannym izmerenii smeschenii na svobodnykh granitsakh”, Sib. zhurn. industr. matematiki, 15:4 (2012), 102–109 | Zbl

[43] Duchkov A. A., Karchevskii A. L., “Opredelenie glubinnogo teplovogo potoka po dannym monitoringa temperatury donnykh osadkov”, Sib. zhurn. industr. matematiki, 16:3 (2013), 61–85 | MR | Zbl

[44] Nazarova L. A., Nazarov L. A., Karchevskii A. L., Vandamm M., “Opredelenie gazokineticheskikh parametrov blochnogo ugolnogo plasta na osnove resheniya obratnoi zadachi po dannym izmereniya davleniya gaza v skvazhine”, Fiziko-tekhn. problemy razrabotki poleznykh iskopaemykh, 2015, no. 4, 34–41

[45] Karchevskii A. L., “Opredelenie vozmozhnosti gornogo udara v ugolnom plaste”, Sib. zhurn. industr. matematiki, 20:4 (2017), 35–43 | Zbl

[46] Karchevskii A. L., Nazarova L. A., Zakharov V. N., Nazarov L. A., “Otsenka napryazhennogo sostoyaniya ugolnogo plasta pri proizvolnykh usloviyakh kontakta s vmeschayuschimi porodami na osnove resheniya obratnoi zadachi”, Gornyi zhurn., 2017, no. 11, 37–40