Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_2_a9, author = {A. B. Khutoretskii and S. V. Bredikhin and A. A. Zamyatin}, title = {A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {108--121}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a9/} }
TY - JOUR AU - A. B. Khutoretskii AU - S. V. Bredikhin AU - A. A. Zamyatin TI - A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 108 EP - 121 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a9/ LA - ru ID - SJIM_2018_21_2_a9 ER -
%0 Journal Article %A A. B. Khutoretskii %A S. V. Bredikhin %A A. A. Zamyatin %T A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem %J Sibirskij žurnal industrialʹnoj matematiki %D 2018 %P 108-121 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a9/ %G ru %F SJIM_2018_21_2_a9
A. B. Khutoretskii; S. V. Bredikhin; A. A. Zamyatin. A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 108-121. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a9/
[1] Martello S., Toth P., Knapsack Problems: Algorithms and Computer Implementations, John Wiley Sons, Chichester–N.Y., 1990 | MR | Zbl
[2] Kellerer H., Pferschy U., Pisinger D., Knapsack Problems, Springer-Verl., Berlin–Heidelberg, 2004 | MR | Zbl
[3] Papadimitriou C., Steiglitz K., Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, Englewood Cliffs, 1982 | MR | Zbl
[4] Chekuri C., Khanna S., “A polynomial time approximation scheme for the multiple knapsack problem”, SIAM J. Computing, 5:3 (2003), 713–728 | DOI | MR
[5] Jansen K., “Parameterized approximation scheme for the multiple knapsack problem”, SIAM J. Computing, 39:4 (2009), 1392–1412 | DOI | MR | Zbl
[6] Dantzig G. D., “Discrete variable extremum problems”, Operations Research, 5:2 (1957), 266–277 | DOI | MR
[7] Mualem A., Nisan N., “Truthful approximation mechanisms for restricted combinatorial auctions”, Games and Economic Behavior, 64:2 (2008), 612–631 | DOI | MR | Zbl