Problems on thin inclusions in a~two-dimensional viscoelastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 66-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study are the equilibrium problems for a two-dimensional viscoelastic body with delaminated thin inclusions in the cases of elastic and rigid inclusions. Both variational and differential formulations of the problems with nonlinear boundary conditions are presented; their unique solvability is substantiated. For the case of a thin elastic inclusion modelled as a Bernoulli–Euler beam, we consider the passage to the limit as the rigidity parameter of the inclusion tends to infinity. In the limit it is the problem about a thin rigid inclusion. Relationship is established between the problems about thin rigid inclusions and the previously considered problems about volume rigid inclusions. The corresponding passage to the limit is justified in the case of inclusions without delamination.
Keywords: variational inequality, viscoelasticity, nonpenetration conditions, elastic inclusion, rigid inclusion, thin inclusion, nonlinear boundary conditions.
@article{SJIM_2018_21_2_a5,
     author = {T. S. Popova},
     title = {Problems on thin inclusions in a~two-dimensional viscoelastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - Problems on thin inclusions in a~two-dimensional viscoelastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 66
EP  - 78
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/
LA  - ru
ID  - SJIM_2018_21_2_a5
ER  - 
%0 Journal Article
%A T. S. Popova
%T Problems on thin inclusions in a~two-dimensional viscoelastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 66-78
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/
%G ru
%F SJIM_2018_21_2_a5
T. S. Popova. Problems on thin inclusions in a~two-dimensional viscoelastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 66-78. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/