Problems on thin inclusions in a~two-dimensional viscoelastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study are the equilibrium problems for a two-dimensional viscoelastic body with delaminated thin inclusions in the cases of elastic and rigid inclusions. Both variational and differential formulations of the problems with nonlinear boundary conditions are presented; their unique solvability is substantiated. For the case of a thin elastic inclusion modelled as a Bernoulli–Euler beam, we consider the passage to the limit as the rigidity parameter of the inclusion tends to infinity. In the limit it is the problem about a thin rigid inclusion. Relationship is established between the problems about thin rigid inclusions and the previously considered problems about volume rigid inclusions. The corresponding passage to the limit is justified in the case of inclusions without delamination.
Keywords: variational inequality, viscoelasticity, nonpenetration conditions, elastic inclusion, rigid inclusion, thin inclusion, nonlinear boundary conditions.
@article{SJIM_2018_21_2_a5,
     author = {T. S. Popova},
     title = {Problems on thin inclusions in a~two-dimensional viscoelastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - Problems on thin inclusions in a~two-dimensional viscoelastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 66
EP  - 78
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/
LA  - ru
ID  - SJIM_2018_21_2_a5
ER  - 
%0 Journal Article
%A T. S. Popova
%T Problems on thin inclusions in a~two-dimensional viscoelastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 66-78
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/
%G ru
%F SJIM_2018_21_2_a5
T. S. Popova. Problems on thin inclusions in a~two-dimensional viscoelastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 66-78. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/

[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[3] Popova T., Rogerson G. A., “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67 (2016), 105 | DOI | MR | Zbl

[4] Popova T. S., “Zadacha o ravnovesii vyazkouprugogo tela s tonkim zhestkim vklyucheniem”, Mat. zametki SVFU, 21:1 (2014), 47–55 | Zbl

[5] Han J., Migorski S., “A quasistatic viscoelastic frictional contact problem with multivalued normal compliance, unilateral constraint and material damage”, J. Math. Anal. Appl., 443:1 (2016), 57–80 | DOI | MR | Zbl

[6] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[7] Kravchuk A. S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, Izd-vo Mosk. gos. akademii priborostroeniya i informatiki, M., 1997

[8] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987

[9] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32 (2012), 69–75 | DOI | MR | Zbl

[10] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl

[11] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[12] Rudoi E. M., “Chislennoe reshenie zadachi o ravnovesii uprugogo tela s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 19:2 (2016), 74–87 | DOI | MR | Zbl

[13] Rudoy E. M., Shcherbakov V. V., “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Elektron. Mat. Izv., 13 (2016), 395–410 | DOI | MR | Zbl

[14] Khludnev A. M., Shcherbakov V. V., “Singular invariant integrals for elastic bodies with thin elastic inclusions and cracks”, Dokl. Phys., 61:12 (2016), 615–619 | DOI | MR

[15] Khludnev A. M., Leugering G. R., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Compl. Systems, 2:1 (2014), 1–21 | DOI | MR

[16] Neustroeva N. V., Lazarev N. P., “Proizvodnaya funktsionala energii v zadache o ravnovesii plastiny Timoshenko, soderzhaschei treschinu na granitse uprugogo vklyucheniya”, Sib. zhurn. industr. matematiki, 20:2 (2017), 59–70 | DOI | MR

[17] Khludnev A. M., Popova T. S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Mat. zametki SVFU, 23:1 (2016), 87–105

[18] Faella L., Khludnev A. M., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Meth. Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR | Zbl

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[20] Popova T. C., “Zhestkoe vklyuchenie v zadache o vyazkouprugom tele s treschinoi”, Mat. zametki YaGU, 20:1 (2013), 73–92 | MR