Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_2_a5, author = {T. S. Popova}, title = {Problems on thin inclusions in a~two-dimensional viscoelastic body}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {66--78}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/} }
T. S. Popova. Problems on thin inclusions in a~two-dimensional viscoelastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 66-78. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a5/
[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[3] Popova T., Rogerson G. A., “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67 (2016), 105 | DOI | MR | Zbl
[4] Popova T. S., “Zadacha o ravnovesii vyazkouprugogo tela s tonkim zhestkim vklyucheniem”, Mat. zametki SVFU, 21:1 (2014), 47–55 | Zbl
[5] Han J., Migorski S., “A quasistatic viscoelastic frictional contact problem with multivalued normal compliance, unilateral constraint and material damage”, J. Math. Anal. Appl., 443:1 (2016), 57–80 | DOI | MR | Zbl
[6] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[7] Kravchuk A. S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, Izd-vo Mosk. gos. akademii priborostroeniya i informatiki, M., 1997
[8] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987
[9] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32 (2012), 69–75 | DOI | MR | Zbl
[10] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[11] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[12] Rudoi E. M., “Chislennoe reshenie zadachi o ravnovesii uprugogo tela s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 19:2 (2016), 74–87 | DOI | MR | Zbl
[13] Rudoy E. M., Shcherbakov V. V., “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Elektron. Mat. Izv., 13 (2016), 395–410 | DOI | MR | Zbl
[14] Khludnev A. M., Shcherbakov V. V., “Singular invariant integrals for elastic bodies with thin elastic inclusions and cracks”, Dokl. Phys., 61:12 (2016), 615–619 | DOI | MR
[15] Khludnev A. M., Leugering G. R., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Compl. Systems, 2:1 (2014), 1–21 | DOI | MR
[16] Neustroeva N. V., Lazarev N. P., “Proizvodnaya funktsionala energii v zadache o ravnovesii plastiny Timoshenko, soderzhaschei treschinu na granitse uprugogo vklyucheniya”, Sib. zhurn. industr. matematiki, 20:2 (2017), 59–70 | DOI | MR
[17] Khludnev A. M., Popova T. S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Mat. zametki SVFU, 23:1 (2016), 87–105
[18] Faella L., Khludnev A. M., “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Meth. Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR | Zbl
[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[20] Popova T. C., “Zhestkoe vklyuchenie v zadache o vyazkouprugom tele s treschinoi”, Mat. zametki YaGU, 20:1 (2013), 73–92 | MR