Construction of $D$-optimal experimental designs for nonparametric regression models
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the problem of a $D$-optimal experimental design for the problem of nonparametric kernel smoothing. Modification is proposed for the process of calculating the Fisher information matrix. $D$-optimal designs are constructed for one and several target points for the problems of nonparametric kernel smoothing using a uniform kernel, the Gauss and Epanechnikov kernels. Comparison is performed between Fedorov's algorithm and direct optimization methods (such as the Nelder–Mead method and the method of differential evolution). The features of the application of the optimality criterion for the experimental design of the problems with several target points were specified for the cases of various kernels and bandwidths.
Keywords: experimental design, $D$-optimal design, nonparametric regression, Fisher information matrix, kernel smoothing.
@article{SJIM_2018_21_2_a3,
     author = {V. I. Denisov and V. S. Timofeev and P. A. Kamenev},
     title = {Construction of $D$-optimal experimental designs for nonparametric regression models},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a3/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - V. S. Timofeev
AU  - P. A. Kamenev
TI  - Construction of $D$-optimal experimental designs for nonparametric regression models
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 46
EP  - 55
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a3/
LA  - ru
ID  - SJIM_2018_21_2_a3
ER  - 
%0 Journal Article
%A V. I. Denisov
%A V. S. Timofeev
%A P. A. Kamenev
%T Construction of $D$-optimal experimental designs for nonparametric regression models
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 46-55
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a3/
%G ru
%F SJIM_2018_21_2_a3
V. I. Denisov; V. S. Timofeev; P. A. Kamenev. Construction of $D$-optimal experimental designs for nonparametric regression models. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 46-55. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a3/

[1] Fedorov V. V., “Design of experiments for locally weighted regression”, J. Statist. Plann. Inference, 81:2 (1999), 363–382 | DOI | MR | Zbl

[2] Fedorov V. V., Teoriya optimalnogo eksperimenta, Nauka, M., 1971

[3] Nadaraja E. A., “On non-parametric estimates of density functions and regression curves”, Theory Probab. Appl., 10:1 (1965), 186–190 | DOI | MR | Zbl

[4] Rasin D., “Neparametricheskaya ekonometrika: Vvodnyi kurs”, Kvantil, 2008, no. 4, 7–56

[5] Watson G. S., “Smooth regression analysis”, Sankhyã. Ser. A, 26:4 (1965), 359–372 | MR

[6] Epanechnikov V. A., “Neparametricheskaya otsenka mnogomernoi plotnosti veroyatnosti”, Teoriya veroyatnostei i ee primenenie, 14:1 (1969), 156–161 | MR | Zbl

[7] Fisher V. A., Optimal and effcient experimental design for nonparametric regression with application to functional data, Univ. Press, Southampton, 2012, 7–40 | MR | Zbl

[8] Nelder J. A., Mead R., “A simplex method for function minimization”, Comput. J., 7:4 (1965), 308–313 | DOI | MR | Zbl

[9] Storn R., Price K., Differential Evolution: a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, ICSI, March 1995 http://ftp.icsi.berkeley.edu