Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the identification methods for the nonlinear dynamical systems described by Volterra series. One of the main problems in the dynamical system simulation is the problem of the choice of the parameters allowing the realization of a desired behavior of the system. If the structure of the model is identified in advance then the solution to this problem closely resembles the identification problem of the system parameters. We also investigate the parameter identification of continuous and discrete nonlinear dynamical systems. The identification methods in the continuous case are based on application of the generalized Borel Theorem in combination with integral transformations. To investigate discrete systems, we use a discrete analog of the generalized Borel Theorem in conjunction with discrete transformations. Using model examples, we illustrate the application of the developed methods for simulation of systems with specified characteristics.
Mots-clés : simulation, identification, Volterra series, Volterra kernel.
Keywords: nonlinear system, dynamical system
@article{SJIM_2018_21_2_a1,
     author = {I. V. Boikov and N. P. Krivulin},
     title = {Identification of parameters of nonlinear dynamical systems simulated by {Volterra} polynomials},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a1/}
}
TY  - JOUR
AU  - I. V. Boikov
AU  - N. P. Krivulin
TI  - Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 17
EP  - 31
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a1/
LA  - ru
ID  - SJIM_2018_21_2_a1
ER  - 
%0 Journal Article
%A I. V. Boikov
%A N. P. Krivulin
%T Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 17-31
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a1/
%G ru
%F SJIM_2018_21_2_a1
I. V. Boikov; N. P. Krivulin. Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 2, pp. 17-31. http://geodesic.mathdoc.fr/item/SJIM_2018_21_2_a1/

[1] Volterra V., Teoriya funktsionalov, integralnykh i integrodifferentsialnykh uravnenii, Nauka, M., 1982 | MR

[2] Boikov I. V., Krivulin N. P., Analiticheskie i chislennye metody identifikatsii dinamicheskikh sistem, Izd-vo PGU, Penza, 2016

[3] Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya, Ucheb. posob., v. 1–5, Izd-vo MGTU im. N. E. Baumana, M., 2004

[4] Boikov I. V., Analiticheskie metody identifikatsii dinamicheskikh sistem, Izd-vo Penz. politekh. in-ta, Penza, 1992

[5] Boikov I. V., Krivulin N. P., “Opredelenie vremennykh kharakteristik lineinykh sistem s raspredelennymi parametrami”, Metrologiya, 2012, no. 8, 3–14

[6] Boikov I. V., Krivulin N. P., “Vosstanovlenie parametrov lineinykh sistem, opisyvaemykh differentsialnymi uravneniyami s peremennymi koeffitsientami”, Izmeritelnaya tekhnika, 2013, no. 4, 6–11

[7] Boikov I. V., Krivulin N. P., “Identifikatsiya diskretnykh dinamicheskikh sistem s raspredelennymi parametrami”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiz.-mat. nauki, 30:2 (2014), 34–49

[8] Boikov I. V., Krivulin N. P., “Parametricheskaya identifikatsiya lineinykh dinamicheskikh sistem s raspredelennymi parametrami”, Metrologiya, 2014, no. 7, 13–24

[9] Krivulin N. P., “Opredelenie parametrov fizicheskikh protsessov, opisyvaemykh differentsialnymi uravneniyami v chastnykh proizvodnykh s peremennymi koeffitsientami”, Mat. i kompyut. modelirovanie estestvennonauchnykh i sotsialnykh problem, Tr. 8 Mezhdunar. nauch.-tekhn. konf. (Penza, 26–30 maya 2014 g.), Izd-vo PGU, Penza, 2014, 172–178

[10] Scherbakov M. A., “Iteratsionnyi metod optimalnoi nelineinoi filtratsii izobrazhenii”, Izv. vuzov. Povolzhskii region. Tekhn. nauki, 20:4 (2011), 43–56

[11] Pupkov K. A., Kapalin V. I., Yuschenko A. S., Teoreticheskie osnovy kibernetiki, Funktsionalnye ryady v teorii nelineinykh sistem, Nauka, M., 1976 | MR

[12] Efros A. M., Danilevskii A. M., Operatsionnoe ischislenie i konturnye integraly, Gostekhizdat, Kharkov, 1937