Postbuckling analysis of flexible elastic frame
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 105-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A completely geometrically nonlinear beam model based on the hypothesis of plane sections and expressed in terms of engineering strains and apparent stresses is applied to the structural analysis of frames. The numerical results are obtained by the Raley–Ritz method with a representation of solutions as a sum of analytical basis functions which were previously proposed by the authors. The convergence of approximate solutions is investigated. High degree of accuracy is demonstrated for both determination of the solution components and the fulfillment of equilibrium equations. It is shown that the limit values of external loads can substantially differ from those predicted by the Euler buckling analysis, which may lead to catastrophic consequences in designing thin-walled structures.
Keywords: geometrically nonlinear deformation, postbuckling, flexible frame, the analytical basis.
@article{SJIM_2018_21_1_a9,
     author = {S. A. Khalilov and V. B. Mintiuk},
     title = {Postbuckling analysis of flexible elastic frame},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/}
}
TY  - JOUR
AU  - S. A. Khalilov
AU  - V. B. Mintiuk
TI  - Postbuckling analysis of flexible elastic frame
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 105
EP  - 117
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/
LA  - ru
ID  - SJIM_2018_21_1_a9
ER  - 
%0 Journal Article
%A S. A. Khalilov
%A V. B. Mintiuk
%T Postbuckling analysis of flexible elastic frame
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 105-117
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/
%G ru
%F SJIM_2018_21_1_a9
S. A. Khalilov; V. B. Mintiuk. Postbuckling analysis of flexible elastic frame. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/

[1] Bisshop K. E., Drucker D. C., “Large deflection of cantilever beams”, Quart. Appl. Math., 1945, no. 3, 272–275 | DOI | MR

[2] Frisch-Fay R., Flexible Bars, Butterworths, London, 1962

[3] Ilyukhin A. A., Prostranstvennye zadachi nelineinoi teorii uprugikh sterzhnei, Nauk. dumka, Kiev, 1979 | MR

[4] Popov E. P., Teoriya i raschet gibkikh uprugikh sterzhnei, Nauka, M., 1986

[5] Svetlitskii V. A., Mekhanika sterzhnei Ch. 1. Statika, Vyssh. shkola, M., 1987 | MR

[6] Levyakov S. V., “Formy ravnovesiya i vtorichnaya poterya ustoichivosti pryamogo sterzhnya, nagruzhennogo prodolnoi siloi”, Prikl. mekhanika i tekhn. fizika, 42:2 (2001), 153–160

[7] Goto Y., Yoshimitsu T., Obata M., “Elliptic integral solutions of plane elastica with axial and shear deformations”, Internat. J. Solids Structures, 26:4 (1990), 375–390 | DOI | MR

[8] Humer A., “Elliptic integral solution of the extensible elastica with a variable length under a concentrated force”, Acta Mech., 222 (2011), 209–223 | DOI

[9] Zienkiewich O. C., Taylor R. L., The Finite Element Method. Solid Mechanics, Butterworthm, Heinemann, Oxford, 2000 | MR

[10] ANSYS Engineering Analysis System, Theoretical Manual (for ANSYS Revision 8.04), Swanson Analysis Systems, 1998

[11] The NASTRAN Theoretical Manual, Level 16.0, National Aeronautical and Space Administration, Washington, DC, 1976

[12] The MacNeal Schwendler Corporation: MSC/Patran, PCL Manual, PCL Reference, 2005

[13] Przemieniecki J. S., Theory of Matrix Structural Analysis, Dover Publ., N.Y., 1968 | MR

[14] Levyakov S. V., “Nelineinyi prostranstvennyi izgib krivolineinykh sterzhnei s uchetom poperechnogo sdviga”, Prikl. mekhanika i tekhn. fizika, 42:2 (2012), 128–136

[15] Levin V. E., Pustovoi N. V., “O vychislenii napryazhenii v konechnykh elementakh deformiruemykh konstruktsii”, Sib. zhurn. industr. matematiki, 10:1 (2007), 120–127 | MR

[16] Reissner E., “On one-dimensional finite-strain beam theory: The plane proble”, Z. Angew. Math. Phys., 23 (1972), 795–804 | DOI

[17] Magnussen A., Ristinmaa M., Ljung Ch., “Behaviour of the extensible elastica solution”, Internat. J. Solids Structures, 38 (2001), 8441–8457 | DOI

[18] Irschik H., Gerstmayr J., “A continuummechanics based derivation of Reissner's large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams”, Acta Mech., 206 (2009), 1–21 | DOI | MR

[19] Khalilov S. A., Mintyuk V. B., “Ploskii nelineinyi izgib balki. Vyvod zamknutoi sistemy uravnenii”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 78:1 (2011), 39–45

[20] Korobeinikov S. N., “Estestvennye tenzory napryazhenii”, Prikl. mekhanika i tekhn. fizika, 42:6 (2001), 152–158 | MR

[21] Curnier A., Rakotomanana L., “Generalized strain and stress measures: critical survey and new results”, Engrg. Trans., 39:3/4 (1991), 461–538 | MR

[22] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987

[23] Mintyuk V. B., “Primenenie proektsionnykh metodov resheniya kraevykh zadach v obyknovennykh proizvodnykh v razvetvlennykh oblastyakh”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 101:4 (2013), 36–44

[24] Mintyuk V. B., “Ortonormirovannyi bazis dlya odnomernykh kraevykh zadach”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 41:5 (2007), 32–36

[25] Dennis J. E. (Jr.), Schnabel R. B., Numerical Methods For Unconstrained Optimization And Nonlinear Equations, SIAM, Philadelphia, 1996 | MR