Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_1_a9, author = {S. A. Khalilov and V. B. Mintiuk}, title = {Postbuckling analysis of flexible elastic frame}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {105--117}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/} }
S. A. Khalilov; V. B. Mintiuk. Postbuckling analysis of flexible elastic frame. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a9/
[1] Bisshop K. E., Drucker D. C., “Large deflection of cantilever beams”, Quart. Appl. Math., 1945, no. 3, 272–275 | DOI | MR
[2] Frisch-Fay R., Flexible Bars, Butterworths, London, 1962
[3] Ilyukhin A. A., Prostranstvennye zadachi nelineinoi teorii uprugikh sterzhnei, Nauk. dumka, Kiev, 1979 | MR
[4] Popov E. P., Teoriya i raschet gibkikh uprugikh sterzhnei, Nauka, M., 1986
[5] Svetlitskii V. A., Mekhanika sterzhnei Ch. 1. Statika, Vyssh. shkola, M., 1987 | MR
[6] Levyakov S. V., “Formy ravnovesiya i vtorichnaya poterya ustoichivosti pryamogo sterzhnya, nagruzhennogo prodolnoi siloi”, Prikl. mekhanika i tekhn. fizika, 42:2 (2001), 153–160
[7] Goto Y., Yoshimitsu T., Obata M., “Elliptic integral solutions of plane elastica with axial and shear deformations”, Internat. J. Solids Structures, 26:4 (1990), 375–390 | DOI | MR
[8] Humer A., “Elliptic integral solution of the extensible elastica with a variable length under a concentrated force”, Acta Mech., 222 (2011), 209–223 | DOI
[9] Zienkiewich O. C., Taylor R. L., The Finite Element Method. Solid Mechanics, Butterworthm, Heinemann, Oxford, 2000 | MR
[10] ANSYS Engineering Analysis System, Theoretical Manual (for ANSYS Revision 8.04), Swanson Analysis Systems, 1998
[11] The NASTRAN Theoretical Manual, Level 16.0, National Aeronautical and Space Administration, Washington, DC, 1976
[12] The MacNeal Schwendler Corporation: MSC/Patran, PCL Manual, PCL Reference, 2005
[13] Przemieniecki J. S., Theory of Matrix Structural Analysis, Dover Publ., N.Y., 1968 | MR
[14] Levyakov S. V., “Nelineinyi prostranstvennyi izgib krivolineinykh sterzhnei s uchetom poperechnogo sdviga”, Prikl. mekhanika i tekhn. fizika, 42:2 (2012), 128–136
[15] Levin V. E., Pustovoi N. V., “O vychislenii napryazhenii v konechnykh elementakh deformiruemykh konstruktsii”, Sib. zhurn. industr. matematiki, 10:1 (2007), 120–127 | MR
[16] Reissner E., “On one-dimensional finite-strain beam theory: The plane proble”, Z. Angew. Math. Phys., 23 (1972), 795–804 | DOI
[17] Magnussen A., Ristinmaa M., Ljung Ch., “Behaviour of the extensible elastica solution”, Internat. J. Solids Structures, 38 (2001), 8441–8457 | DOI
[18] Irschik H., Gerstmayr J., “A continuummechanics based derivation of Reissner's large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams”, Acta Mech., 206 (2009), 1–21 | DOI | MR
[19] Khalilov S. A., Mintyuk V. B., “Ploskii nelineinyi izgib balki. Vyvod zamknutoi sistemy uravnenii”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 78:1 (2011), 39–45
[20] Korobeinikov S. N., “Estestvennye tenzory napryazhenii”, Prikl. mekhanika i tekhn. fizika, 42:6 (2001), 152–158 | MR
[21] Curnier A., Rakotomanana L., “Generalized strain and stress measures: critical survey and new results”, Engrg. Trans., 39:3/4 (1991), 461–538 | MR
[22] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987
[23] Mintyuk V. B., “Primenenie proektsionnykh metodov resheniya kraevykh zadach v obyknovennykh proizvodnykh v razvetvlennykh oblastyakh”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 101:4 (2013), 36–44
[24] Mintyuk V. B., “Ortonormirovannyi bazis dlya odnomernykh kraevykh zadach”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 41:5 (2007), 32–36
[25] Dennis J. E. (Jr.), Schnabel R. B., Numerical Methods For Unconstrained Optimization And Nonlinear Equations, SIAM, Philadelphia, 1996 | MR