Direct and inverse problems of electromagnetic conrol
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 90-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematic model is suggested of the direct and universe problems of flaw detection. The direct problem consists in determining the complex amplitude of EMF in the through-type-induction-transducer–air gap–ferromagnetic cylinder system. In the direct problem, the distribution laws of magnetic permeability and electrical conduction are assumed to be known. A formula is obtained for calculating the complex amplitude of EMF in the class of piecewise-constant dependences of electromagnetic parameters. The inverse problem of flaw detection for a ferromagnetic cylinder consists in determining the magnetic permeability based on the measured values of the moduli of the EMF amplitudes in the system on a fixed frequency grid. An approximate solution of the inverse problem is searched in the class of piecewise-constant functions. Tikhonov's method of regularization is used to solve the inverse problem. The results of numerical and physical modeling are presented.
Keywords: direct problem of flaw detection, inverse problem of flaw detection, ferromagnetic cylinder, magnetic permeability, piecewise-constant functions, method of regularization.
@article{SJIM_2018_21_1_a8,
     author = {V. N. Stepanov},
     title = {Direct and inverse problems of electromagnetic conrol},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {90--104},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a8/}
}
TY  - JOUR
AU  - V. N. Stepanov
TI  - Direct and inverse problems of electromagnetic conrol
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 90
EP  - 104
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a8/
LA  - ru
ID  - SJIM_2018_21_1_a8
ER  - 
%0 Journal Article
%A V. N. Stepanov
%T Direct and inverse problems of electromagnetic conrol
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 90-104
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a8/
%G ru
%F SJIM_2018_21_1_a8
V. N. Stepanov. Direct and inverse problems of electromagnetic conrol. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 90-104. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a8/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[2] Romanov V. G., Kabanikhin S. I., Pukhnacheva T. P., Obratnye zadachi elektrodinamiki, izd. VTs SO RAN SSSR, Novosibirsk, 1984 | MR

[3] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki, Nauka, M., 1991 | MR

[4] Berdichevskii M. N., Dmitriev V. I., Novikov D. B., Plastutsan V. V., Analiz i interpretatsiya magnitotelluricheskikh dannykh, DialogM GU, M., 1997

[5] Tikhonov A. N., “K matematicheskomu obosnovaniyu teorii elektromagnitnykh zondirovanii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 545–548

[6] Dmitriev V. I., Ilinskii A. S., Sveshnikov A. G., “Razvitie matematicheskikh metodov issledovaniya pryamykh i obratnykh zadach elektrodinamiki”, Uspekhi mat. nauk, 31:6(192) (1976), 123–141 | MR | Zbl

[7] Kabanikhin S. I., Nurseitov D. B., Sholpanbaev B. B., “Zadacha prodolzheniya elektromagnitnogo polya v storonu zaleganiya neodnorodnostei”, Sib. elektron. mat. izv., 11 (2014), C.85–C.102

[8] Glasko V. B., Kulik N. I., Tikhonov A. N., “Ob opredelenii geoelektricheskogo razreza na osnove metoda regulyarizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 12:1 (1972), 139–149

[9] Romanov V. G., “Opredelenie parametrov sloistoi kusochno-postoyannoi sredy pri neizvestnoi forme impulsnogo istochnika”, Sib. mat. zhurn., 48:6 (2007), 1338–1350 | MR | Zbl

[10] Dmitriev V. I., “Obratnye zadachi chastotnogo zondirovaniya sloistykh sred”, Prikladnaya matematika i informatika, 51 (2016), 5–15

[11] Fedorov A. I., Epov M. I., “Peremennoe elektromagnitnoe pole v naklonno-anizotropnoi sloistoi srede”, Sib. zhurn. industr. matematiki, 6:4 (2003), 119–131 | MR | Zbl

[12] Karchevskii A. L., “Analiz resheniya obratnoi dinamicheskoi zadachi seismiki dlya gorizontalno-sloistoi anizotropnoi sredy”, Geologiya i geofizika, 47:11 (2006), 1170–1184

[13] Karchevskii A. L., “Algoritm vosstanovleniya uprugikh postoyannykh anizotropnogo sloya, nakhodyaschegosya v izotropnoi gorizontalno-sloistoi srede”, Sib. elektron. mat. izv., 4 (2007), 20–51 | MR | Zbl

[14] Gerasimov V. G., Klyuev V. V., Shaternikov V. E., Metody i pribory elektromagnitnogo kontrolya, Spektr, M., 2010

[15] Dobrovolskii S. M., Seleznev Yu. V., Piskunov D. K., “Zavisimost magnitnoi pronitsaemosti i elektroprovodnosti ot glubiny v kontroliruemom sloe ferromagnitnogo tsilindra”, Defektoskopiya, 1986, no. 6, 23–29

[16] Gerasimov V. G., Ostanin Yu. A., Pokrovskii A. D. i dr., Nerazrushayuschii kontrol kachestva elektromagnitnymi metodami, Energiya, M., 2008

[17] Tamm I. E., Osnovy teorii elektrichestva, Fizmatgiz, M., 2003

[18] Polivanov K. M., Ferromagnetiki, izd. GEI, M.–L., 1957

[19] Sukhorukov V. V., Matematicheskoe modelirovanie elektromagnitnykh polei v provodyaschikh sredakh, Energiya, M., 1975

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[21] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Nauka, M., 1970

[22] Beiko I. V., Bublik B. N., Zinko P. N., Metody i algoritmy resheniya zadach optimizatsii, Vischa shkola, Kiev, 1983

[23] Stepanov V. N., Piskunov D. K., Reshetnikov E. G., Seleznev V. Yu., Khaprov S. A., Otchet o NIR No GR 01870019312, OmGTU, Omsk, 1989