General solution for two-dimensional system of static Lame's equations with an asymmetric elasticity matrix
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 61-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a two-dimensional system of equations of linear elasticity theory in the case when the symmetric stress and strain tensors are related by an asymmetric matrix of elasticity moduli or elastic compliances. The linear relation between stresses and strains is written in an invariant form which contains three positive eigenmodules in the two-dimensional case. Using a special eigenbasis in the strain space, it is possible to write the constitutive equations with a symmetric matrix, i.e., in the same way as in the case of hyperelasticity. We obtain a representation of the general solution of two-dimensional equations in displacements as a linear combination of the first derivatives of two functions which satisfy two independent harmonic equations. The obtained representation directly implies a generalization of the Kolosov–Muskhelishvili representation of displacements and stresses in terms of two analytic functions of complex variable. We consider all admissible values of elastic parameters, including the case when the system of differential equations may become singular. We provide an example of solving the problem for a plane with a circular hole loaded by constant stresses.
Keywords: quasielasticity, Cauchy elasticity, two-dimensional isotropy, transversal isotropy, eigenbasis, general solution.
Mots-clés : eigenmodule
@article{SJIM_2018_21_1_a5,
     author = {N. I. Ostrosablin},
     title = {General solution for two-dimensional system of static {Lame's} equations with an asymmetric elasticity matrix},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a5/}
}
TY  - JOUR
AU  - N. I. Ostrosablin
TI  - General solution for two-dimensional system of static Lame's equations with an asymmetric elasticity matrix
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 61
EP  - 71
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a5/
LA  - ru
ID  - SJIM_2018_21_1_a5
ER  - 
%0 Journal Article
%A N. I. Ostrosablin
%T General solution for two-dimensional system of static Lame's equations with an asymmetric elasticity matrix
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 61-71
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a5/
%G ru
%F SJIM_2018_21_1_a5
N. I. Ostrosablin. General solution for two-dimensional system of static Lame's equations with an asymmetric elasticity matrix. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a5/

[1] Khan Kh., Teoriya uprugosti. Osnovy lineinoi teorii i ee primeneniya, Mir, M., 1988 | MR

[2] Chernykh K. F., Vvedenie v anizotropnuyu uprugost, Nauka, M., 1988

[3] Bytev V. O., Slezko I. V., Nikolaev D. E., “Tochnye resheniya nekotorykh zadach ploskoi asimmetrichnoi teorii uprugosti”, Vestn. Tyumen. gos. un-ta, 2007, no. 5, 32–43

[4] Bytev V. O., Slezko I. V., “Reshenie zadach asimmetrichnoi uprugosti”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 2008, no. 6, 238–243

[5] Bytev V. O., Shkutin L. I., “Asimmetrichnaya uprugost”, 15 Zimnyaya shkola po mekhanike sploshnykh sred, Ch. 1 (Perm, 26 fevralya – 3 marta 2007 g.), In-t mekhaniki sploshnykh sred UrO RAN, Perm, 2007, 166–169

[6] Podio-Guidugli P., Virga E. G., “Transversely isotropic elasticity tensors”, Proc. Roy. Soc. London. Ser. A, 411:1840 (1987), 85–93 | DOI | MR

[7] Andreev V. K., Bublik V. V., Bytev V. O., Simmetrii neklassicheskikh modelei gidrodinamiki, Nauka, Novosibirsk, 2003 | MR

[8] Ostrosablin N. I., “Obschee reshenie i privedenie uravnenii lineinoi izotropnoi uprugosti k diagonalnomu vidu”, Sib. zhurn. industr. matematiki, 12:2 (2009), 79–83 | MR

[9] Ostrosablin N. I., “Diagonalizatsiya sistemy staticheskikh uravnenii Lame lineinoi izotropnoi uprugosti”, Sib. zhurn. industr. matematiki, 15:3 (2012), 87–98 | MR

[10] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR