Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_1_a10, author = {V. I. Shmyrev}, title = {Polyhedral complementarity on a~simplex. {Potentiality} of regular mappings}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {118--128}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/} }
TY - JOUR AU - V. I. Shmyrev TI - Polyhedral complementarity on a~simplex. Potentiality of regular mappings JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2018 SP - 118 EP - 128 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/ LA - ru ID - SJIM_2018_21_1_a10 ER -
V. I. Shmyrev. Polyhedral complementarity on a~simplex. Potentiality of regular mappings. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 118-128. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/
[1] Murty K. G., Linear complementarity. Linear and Nonlinear Programming, Heldermann, Berlin, 1988 | MR
[2] Lemke C. E., Howson J. T., “Equilibrium points of bimatrix games”, SIAM J. Appl. Math., 12 (1964), 413–423 | DOI | MR
[3] Lemke C. E., “Bimatrix equilibrium points and mathematical programming”, Manag. Sci., 2:7 (1965), 681–689 | DOI | MR
[4] Eaves B. C., “A finite algorithm for the linear exchange model”, J. Math. Economics, 3:2 (1976), 197–204 | DOI | MR
[5] Shmyrev V. A., “Ob otyskanii nepodvizhnykh tochek kusochno-postoyannykh monotonnykh otobrazhenii v $\mathbb R^n$”, Dokl. AN SSSR, 259:2 (1981), 299–301 | MR
[6] Shmyrev V. A., “Ob odnom podkhode k otyskaniyu ravnovesiya v prosteishikh modelyakh obmena”, Dokl. AN SSSR, 268:5 (1983), 1062–1066 | MR
[7] Shmyrev V. A., “Algoritmy otyskaniya ravnovesiya v modelyakh obmena s fiksirovannymi byudzhetami”, Optimizatsiya, 1983, no. 31(48), 137–155 | MR
[8] Shmyrev V. I., “Algoritm poiska ravnovesiya v lineinoi modeli obmena”, Sib. mat. zhurn., 26:2 (1985), 162–175 | MR
[9] Shmyrev V. I., “Obobschennaya lineinaya model obmen”, Diskr. analiz i issled. operetsii. Ser. 2, 13:2 (2006), 74–102
[10] Shmyrev V. A., “Lineinaya model proizvodstva–obmena. Poliedralnye kompleksy i priznak optimalnosti”, Sib. zhurn. industr. matematiki, 14:2 (2011), 124–131 | MR
[11] Shmyrev V. I., “Polyhedral complementarity and equilibrium problem in linear exchange models”, Far East J. Appl. Math., 82:2 (2013), 67–85
[12] Shmyrev V. A., “Algoritmy poliedralnoi komplementarnosti dlya otyskaniya ravnovesiya v lineinykh modelyakh konkurentnoi ekonomiki”, Diskretn. analiz i issled. operatsii. Ser. 2, 21:2 (2014), 84–101 | MR
[13] Shmyrev V. A., “Ob odnom algoritme otyskaniya ravnovesiya v lineinoi modeli s fiksirovannymi byudzhetami”, Sib. zhurn. industr. matematiki, 11:2 (2008), 139–154 | MR
[14] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Ann. Math. Statist., 30:1 (1959), 165–168 | DOI | MR
[15] Devanur N. R., Papadimitriou C. H., Saberi A., Vazirani V. V., “Market equilibrium via a primal-dual algorithm for a convex program”, J. ACM, 55:5 (2008), Paper 22 | DOI | MR
[16] Shmyrev V. I., Shmyreva N. V., “An iterative algorithm for searching an equilibrium in the linear exchange model”, Siberian Adv. Math., 6:1 (1996), 87–104 | MR
[17] Shmyrev V. I., “An iterative approach for searching an equilibrium in piecewise linear exchange model”, Lecture Notes in Computer Sci., 9869, 2016, 61–72 | DOI | MR
[18] Shmyrev V. I., “Ob otyskanii ravnovesiya v lineinoi modeli obmena s fiksirovannymi byudzhetami i dopolnitelnymi ogranicheniyami finansovogo tipa”, Optimizatsiya, 1989, no. 45(62), 66–86 | MR
[19] Vazirani V. V., “Spending constraint utilities, with applications to the adwords market”, Math. Operations Res., 35:2 (2010), 458–478 | DOI | MR
[20] Birnbaum B., Devanur N. R., Xiao L., “Distributed algorithms via gradient descent for Fisher markets”, 12 ACM Conf. Electronic Commerce, ACM, N.Y., 2011, 127–136
[21] Garg J., Mehta R., Sohoni M., Vishnoi N. K., “Towards polynomial simplex-like algorithms for market equilibria”, 24 Annual ACM–SIAM Symp. Discrete Algorithms, SIAM, Philadelphia, 2013, 1226–1242
[22] Vegh L., “Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives”, 44 ACM Symp. Theory of Computing, N.Y., 2012, 27–39 | MR
[23] Aleksandrov P. S., Obschaya teoriya gomologii, Nauka, M., 1979