Polyhedral complementarity on a~simplex. Potentiality of regular mappings
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 118-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special class of the fixed point problems for piecewise constant mappings of a simplex into itself. These are polyhedral complementarity problems arising in studying the classical exchange model and its variations. We study the problems that stem from the consideration of models with fixed budgets and possessing a certain property of monotonicity (logarithmic monotonicity). Our considerations are purely mathematical and not associated with the economic models that gave rise to these mathematical objects. The class of regular mappings is investigated, and their potentiality is proved.
Keywords: linear complementarity, polyhedral complex, monotonicity, potentiality of mapping, homology group.
@article{SJIM_2018_21_1_a10,
     author = {V. I. Shmyrev},
     title = {Polyhedral complementarity on a~simplex. {Potentiality} of regular mappings},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/}
}
TY  - JOUR
AU  - V. I. Shmyrev
TI  - Polyhedral complementarity on a~simplex. Potentiality of regular mappings
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 118
EP  - 128
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/
LA  - ru
ID  - SJIM_2018_21_1_a10
ER  - 
%0 Journal Article
%A V. I. Shmyrev
%T Polyhedral complementarity on a~simplex. Potentiality of regular mappings
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 118-128
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/
%G ru
%F SJIM_2018_21_1_a10
V. I. Shmyrev. Polyhedral complementarity on a~simplex. Potentiality of regular mappings. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 118-128. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/