Polyhedral complementarity on a~simplex. Potentiality of regular mappings
Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 118-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special class of the fixed point problems for piecewise constant mappings of a simplex into itself. These are polyhedral complementarity problems arising in studying the classical exchange model and its variations. We study the problems that stem from the consideration of models with fixed budgets and possessing a certain property of monotonicity (logarithmic monotonicity). Our considerations are purely mathematical and not associated with the economic models that gave rise to these mathematical objects. The class of regular mappings is investigated, and their potentiality is proved.
Keywords: linear complementarity, polyhedral complex, monotonicity, potentiality of mapping, homology group.
@article{SJIM_2018_21_1_a10,
     author = {V. I. Shmyrev},
     title = {Polyhedral complementarity on a~simplex. {Potentiality} of regular mappings},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/}
}
TY  - JOUR
AU  - V. I. Shmyrev
TI  - Polyhedral complementarity on a~simplex. Potentiality of regular mappings
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2018
SP  - 118
EP  - 128
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/
LA  - ru
ID  - SJIM_2018_21_1_a10
ER  - 
%0 Journal Article
%A V. I. Shmyrev
%T Polyhedral complementarity on a~simplex. Potentiality of regular mappings
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2018
%P 118-128
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/
%G ru
%F SJIM_2018_21_1_a10
V. I. Shmyrev. Polyhedral complementarity on a~simplex. Potentiality of regular mappings. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 118-128. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a10/

[1] Murty K. G., Linear complementarity. Linear and Nonlinear Programming, Heldermann, Berlin, 1988 | MR

[2] Lemke C. E., Howson J. T., “Equilibrium points of bimatrix games”, SIAM J. Appl. Math., 12 (1964), 413–423 | DOI | MR

[3] Lemke C. E., “Bimatrix equilibrium points and mathematical programming”, Manag. Sci., 2:7 (1965), 681–689 | DOI | MR

[4] Eaves B. C., “A finite algorithm for the linear exchange model”, J. Math. Economics, 3:2 (1976), 197–204 | DOI | MR

[5] Shmyrev V. A., “Ob otyskanii nepodvizhnykh tochek kusochno-postoyannykh monotonnykh otobrazhenii v $\mathbb R^n$”, Dokl. AN SSSR, 259:2 (1981), 299–301 | MR

[6] Shmyrev V. A., “Ob odnom podkhode k otyskaniyu ravnovesiya v prosteishikh modelyakh obmena”, Dokl. AN SSSR, 268:5 (1983), 1062–1066 | MR

[7] Shmyrev V. A., “Algoritmy otyskaniya ravnovesiya v modelyakh obmena s fiksirovannymi byudzhetami”, Optimizatsiya, 1983, no. 31(48), 137–155 | MR

[8] Shmyrev V. I., “Algoritm poiska ravnovesiya v lineinoi modeli obmena”, Sib. mat. zhurn., 26:2 (1985), 162–175 | MR

[9] Shmyrev V. I., “Obobschennaya lineinaya model obmen”, Diskr. analiz i issled. operetsii. Ser. 2, 13:2 (2006), 74–102

[10] Shmyrev V. A., “Lineinaya model proizvodstva–obmena. Poliedralnye kompleksy i priznak optimalnosti”, Sib. zhurn. industr. matematiki, 14:2 (2011), 124–131 | MR

[11] Shmyrev V. I., “Polyhedral complementarity and equilibrium problem in linear exchange models”, Far East J. Appl. Math., 82:2 (2013), 67–85

[12] Shmyrev V. A., “Algoritmy poliedralnoi komplementarnosti dlya otyskaniya ravnovesiya v lineinykh modelyakh konkurentnoi ekonomiki”, Diskretn. analiz i issled. operatsii. Ser. 2, 21:2 (2014), 84–101 | MR

[13] Shmyrev V. A., “Ob odnom algoritme otyskaniya ravnovesiya v lineinoi modeli s fiksirovannymi byudzhetami”, Sib. zhurn. industr. matematiki, 11:2 (2008), 139–154 | MR

[14] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Ann. Math. Statist., 30:1 (1959), 165–168 | DOI | MR

[15] Devanur N. R., Papadimitriou C. H., Saberi A., Vazirani V. V., “Market equilibrium via a primal-dual algorithm for a convex program”, J. ACM, 55:5 (2008), Paper 22 | DOI | MR

[16] Shmyrev V. I., Shmyreva N. V., “An iterative algorithm for searching an equilibrium in the linear exchange model”, Siberian Adv. Math., 6:1 (1996), 87–104 | MR

[17] Shmyrev V. I., “An iterative approach for searching an equilibrium in piecewise linear exchange model”, Lecture Notes in Computer Sci., 9869, 2016, 61–72 | DOI | MR

[18] Shmyrev V. I., “Ob otyskanii ravnovesiya v lineinoi modeli obmena s fiksirovannymi byudzhetami i dopolnitelnymi ogranicheniyami finansovogo tipa”, Optimizatsiya, 1989, no. 45(62), 66–86 | MR

[19] Vazirani V. V., “Spending constraint utilities, with applications to the adwords market”, Math. Operations Res., 35:2 (2010), 458–478 | DOI | MR

[20] Birnbaum B., Devanur N. R., Xiao L., “Distributed algorithms via gradient descent for Fisher markets”, 12 ACM Conf. Electronic Commerce, ACM, N.Y., 2011, 127–136

[21] Garg J., Mehta R., Sohoni M., Vishnoi N. K., “Towards polynomial simplex-like algorithms for market equilibria”, 24 Annual ACM–SIAM Symp. Discrete Algorithms, SIAM, Philadelphia, 2013, 1226–1242

[22] Vegh L., “Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives”, 44 ACM Symp. Theory of Computing, N.Y., 2012, 27–39 | MR

[23] Aleksandrov P. S., Obschaya teoriya gomologii, Nauka, M., 1979