Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2018_21_1_a1, author = {V. I. Zorkaltsev and I. V. Mokryi}, title = {Interior point algorithms in linear optimization}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {11--20}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a1/} }
V. I. Zorkaltsev; I. V. Mokryi. Interior point algorithms in linear optimization. Sibirskij žurnal industrialʹnoj matematiki, Tome 21 (2018) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/SJIM_2018_21_1_a1/
[1] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR
[2] Dikin I. I., “Iterativnoe reshenie zadachi lineinogo i kvadratichnogo programmirovaniya”, Dokl. AN SSSR, 174:4 (1967), 747–748 | MR | Zbl
[3] Antsyz S. M., Dikin I. I., “Ob odnom chislennom metode resheniya zadachi lineinogo programmirovaniya i nekotorykh ee obobschenii”, Upravlyaemye sistemy, 3, 1969, 54–56
[4] Evtushenko Yu. G., “Relaksatsionnyi metod resheniya zadachi nelineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 17:4 (1977), 890–904 | MR | Zbl
[5] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR
[6] Zorkaltsev V. I., “Ob odnom klasse algoritmov vnutrennikh tochek”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2114–2130 | MR
[7] Zorkal'tsev V. I., “Substantiation of interior point algorithms”, Comput. Math. Math. Phys., 39:2 (1999), 198–211 | MR | Zbl
[8] Zorkaltsev V. I., Otnositelno vnutrennyaya tochka optimalnykh reshenii, izd. Komi fil. AN SSSR, Syktyvkar, 1984
[9] Monteiro R. D. C., Tsuchiya T., Wang Y., “A simplified global convergence proof of the affine scaling algorithm”, Ann. Oper. Res., 47 (1993), 443–482 | DOI | MR
[10] Vanderbey R. J., Mecheton M. S., Freedman B. A., “Modification of Karmarkar's linear programming algorithm”, Algorithmica, 1 (1986), 395–407 | DOI | MR
[11] Barnes E. R., “A variation on Karmarkar's algorithm for solving linear problems”, Math. Programming, 36 (1986), 174–182 | DOI | MR
[12] Wei Zi Luan, “An interior point method for linear programming”, J. Comput. Math., 5:4 (1987), 342–351 | MR
[13] Zorkaltsev V. I., Metod otnositelno vnutrennikh tochek, izd. Komi fil. AN SSSR, Syktyvkar, 1986
[14] Zorkal'tsev V. I., “Dual interior point algorithms”, Rus. Math. 2011, 55:4, 26–43 | MR
[15] Monma C. L., Morton A. J., Computational Experience with a Dual Affino Variant of Karmarkar's Method for Linear Programming, Manuscript, Bell Communication Research, Morristown, 1987 | MR
[16] Kojima M., Mizuno S., Yoshise A., “A polynomial-time algorithm for a class of linear complementarity problems”, Math. Programming, 44 (1989), 1–26 | DOI | MR
[17] Monteiro R., Adler I., “Interior path following primal-dual algorithms: linear programming. P. I”, Math. Programming, 44 (1989), 27–41 | DOI | MR
[18] Zorkaltsev V. I., Nechaeva M. S., Optimizatsiya v konuse tsentralnogo puti, izd. SEI SO RAN, Irkutsk, 1995
[19] Zorkal'tsev V. I., “Optimization algorithms in the cone of central path”, Comput. Math. Math. Phys., 40:2 (2000), 304–312 | MR | Zbl
[20] Dikin I. I., Metod vnutrennikh tochek v lineinom i nelineinom programmirovanii, KRASAND, M., 2010
[21] Zhadan V. G., Metody optimizatsii. Ch. 2. Chislennye algoritmy, Ucheb. posobie, izd. MFTI, M., 2015
[22] Karmarkar N. K., “A new polynomial-time algorithm for linear programming”, Combinatorica, 4 (1984), 373–395 | DOI | MR