Determination of the thermophysical properties of media with the help of a~needle probe
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Needle probes with linear heater inside are often used for determining the thermophysical characteristics of loose rocks. The main issue of contact methods of the measurements of the thermal characteristics of different media consists in the establishment of a thermal contact resistance at the boundary (line) between the source and the medium. This contact resistance should be taken into account while measuring the thermal diffusivity of the medium. The paper describes a mathematical model of the heating of a long needle probe in the medium under study that takes into account the size and thermal characteristics of the needle probe and an imperfect thermal contact between the probe and the studied medium. On the basis of this model, we pose and solve the inverse problem of finding the thermal diffusivity of the medium and the thermal contact resistance at the boundary between the probe and the medium. The aim of this research is to develop a new method for determining the thermal properties of various media in the field.
Keywords: thermal conductivity, thermal diffusivity, thermal contact resistance, needle probe, inverse problem.
@article{SJIM_2017_20_4_a9,
     author = {I. I. Fadeeva and A. A. Duchkov},
     title = {Determination of the thermophysical properties of media with the help of a~needle probe},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {80--89},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a9/}
}
TY  - JOUR
AU  - I. I. Fadeeva
AU  - A. A. Duchkov
TI  - Determination of the thermophysical properties of media with the help of a~needle probe
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 80
EP  - 89
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a9/
LA  - ru
ID  - SJIM_2017_20_4_a9
ER  - 
%0 Journal Article
%A I. I. Fadeeva
%A A. A. Duchkov
%T Determination of the thermophysical properties of media with the help of a~needle probe
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 80-89
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a9/
%G ru
%F SJIM_2017_20_4_a9
I. I. Fadeeva; A. A. Duchkov. Determination of the thermophysical properties of media with the help of a~needle probe. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 4, pp. 80-89. http://geodesic.mathdoc.fr/item/SJIM_2017_20_4_a9/

[1] V. V. Babaev, V. F. Budymka, M. A. Dombrovskii i dr., Teplovye svoistva gornykh porod, Nedra, M., 1987

[2] Lide D. R., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2009, 2–65

[3] Von Herzen R., Maxwell A. E., “The measurement of thermal conductivity of deep sea sediments by a needle probe method”, J. Geophys. Research., 64:10 (1959), 1557–1563 | DOI

[4] Blackwell J. H., “A transient-flow method for determination of thermal constants of insulating materials in bulk”, J. Appl. Phys., 25:2 (1954), 137–144 | DOI | Zbl

[5] Waite W. F. et al., “Sumultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate”, Geophys. J. Internat., 169 (2007), 767–774 | DOI

[6] Kazantsev S. A., Fadeeva I. I., “Ustroistvo dlya operativnogo izmereniya temperaturoprovodnosti slabostsementirovannykh porod”, Mezhdunar. nauch. konf. “Nedropolzovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenii poleznykh iskopaemykh. Geoekologiya”, v. 2, izd. SGUGiT, Novosibirsk, 2015, 82–85

[7] Fadeeva I. I., Duchkov A. A., Karchevskii A. L., “Teoriya metoda igolchatogo zonda dlya odnovremennogo opredeleniya teplo- i temperaturoprovodnosti razlichnykh sred”, Interekspo Geo-Sibir, 2:3 (2014), 118–122

[8] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme Methods for Solving Ill-Posed Problems with Applications to Universe Heat Transfer Problems, Begell House, N.Y., 1995

[9] Karchevsky A. L., “Analysis of solving of the inverse dynamical problem of seismics for horisontally stratified anisotropic media”, Russian Geology and Geophysics, 47:11 (2006), 1150–1164

[10] Karchevsky A. L., “Simultaneous reconstruction of permittivity and conductivity”, J. Inverse Ill-Posed Probl., 17:4 (2009), 385–402 | DOI | MR

[11] Duchkov A. A., Karchevskii A. L., “Opredelenie glubinnogo teplovogo potoka po dannym monitoringa temperatury donnykh osadkov”, Sib. zhurn. industr. matematiki, 16:3 (2013), 61–85 | MR | Zbl

[12] Nazarova L. A., Nazarov L. A., Karchevskii A. L., Vandamm M., “Otsenka diffuzionno-emkostnykh parametrov ugolnogo plasta po dannym izmereniya davleniya gaza v skvazhine na osnove resheniya obratnoi zadachi”, Sib. zhurn. industr. matematiki, 17:1 (2014), 78–85 | MR | Zbl

[13] Karchevsky A. L., “Reconstruction of pressure velocities and boundaries of thin layers in thinlystratified layers”, J. Inverse Ill-Posed Probl., 18:4 (2010), 371–388 | DOI | MR | Zbl

[14] Volkov A. I., Zharskii I. M., Bolshoi khimicheskii spravochnik, Sovremennaya shkola, Minsk, 2005