The conjugation problem for thin elastic and rigid inclusions in an elastic body
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the conjugation of a thin elastic inclusion and a thin rigid inclusion that are in contact at one point and are placed in an elastic body. Depending on what kind of conjugation conditions are given at the contact point of the inclusions, we consider the two cases: the case of no fracture, where as the conjugation conditions we take the coincidence of the displacements at the contact point and the preservation of the angle between the inclusions, and the case with a fraction, where only the coincidence of the displacements is given. At the conjugation point, we obtain boundary conditions for a differential statement of the problem. Delamination happens at the positive face of the rigid inclusion. On the crack faces, inequality-type nonlinear boundary conditions are given to prevent the mutual penetration of the crack faces. Existence and uniqueness theorems for a solution to the equilibrium problem are proved for each of the cases.
Keywords: thin rigid inclusion, crack, nonlinear boundary conditions, Kirchhoff–Love beam
Mots-clés : conjugation conditions.
@article{SJIM_2017_20_3_a7,
     author = {V. A. Puris},
     title = {The conjugation problem for thin elastic and rigid inclusions in an elastic body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--79},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a7/}
}
TY  - JOUR
AU  - V. A. Puris
TI  - The conjugation problem for thin elastic and rigid inclusions in an elastic body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 70
EP  - 79
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a7/
LA  - ru
ID  - SJIM_2017_20_3_a7
ER  - 
%0 Journal Article
%A V. A. Puris
%T The conjugation problem for thin elastic and rigid inclusions in an elastic body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 70-79
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a7/
%G ru
%F SJIM_2017_20_3_a7
V. A. Puris. The conjugation problem for thin elastic and rigid inclusions in an elastic body. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 70-79. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a7/

[1] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[2] Khludnev A. M., Negri M., “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[3] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[4] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000

[5] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl

[6] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurn. industr. matematiki, 16:1 (2013), 138–147

[7] Scherbakov V. V., “Upravlenie zhestkostyu tonkikh vklyuchenii v uprugikh telakh s krivolineinymi treschinami”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:1 (2013), 135–149

[8] Rudoi E. M., “Invariantnye integraly v ploskoi zadache teorii uprugosti dlya tel s zhestkimi vklyucheniyami i treschinami”, Sib. zhurn. industr. matematiki, 15:1 (2012), 99–109 | MR | Zbl

[9] Alekseev G. V., Khludnev A. M., “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:2 (2009), 15–29 | Zbl

[10] Kovtunenko V. A., “Variatsionnaya i kraevaya zadachi s treniem na vnutrennei granitse”, Sib. mat. zhurn., 39:5 (1998), 1060–1073 | MR | Zbl

[11] Kovtunenko V. A., “Reshenie zadachi ob optimalnom razreze v uprugoi balke”, Prikl. mekhanika i tekhn. fizika, 40:5 (1999), 149–157 | MR | Zbl

[12] Lazarev N. P., “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Federal Univ. Mathematics Physics, 6:1 (2013), 53–62

[13] Rotanova T. A., “Kontakt plastin, zhestkie vklyucheniya v kotorykh vykhodyat na granitsu”, Vestn. Tomsk. gos. un-ta. Matematika i mekhanika, 2011, no. 3(15), 99–107

[14] Rotanova T. A., “Zadacha ob odnostoronnem kontakte dvukh plastin, odna iz kotorykh soderzhit zhestkoe vklyuchenie”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:1 (2011), 87–98 | Zbl

[15] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[16] Lazarev N. P., “Metod fiktivnykh oblastei v zadache o ravnovesii plastiny Timoshenko, kontaktiruyuschei s zhestkim prepyatstviem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:1 (2013), 91–104 | Zbl

[17] Lazarev N. P., “Zadacha o ravnovesii plastiny Timoshenko, soderzhaschei skvoznuyu treschinu”, Sib. zhurn. industr. matematiki, 14:4 (2011), 32–43 | MR | Zbl

[18] Khludnev A. M., “Ob izgibe uprugoi plastiny s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 14:1 (2011), 114–126 | MR | Zbl

[19] Khludnev A. M., “Metod gladkikh oblastei v zadache o ravnovesii plastiny s treschinoi”, Sib. mat. zhurn., 43:6 (2002), 1388–1400 | MR | Zbl

[20] Neustroeva N. V., “Kontaktnaya zadacha dlya uprugikh tel raznykh razmernostei”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 8:4 (2008), 60–75 | Zbl

[21] Berezhnitskii L. T., Panasyuk V. V., Staschuk N. G., Vzaimodeistvie zhestkikh lineinykh vklyuchenii i treschin v deformiruemom tele, Nauk. dumka, Kiev, 1983

[22] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl