Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_3_a5, author = {N. A. Lutsenko and S. S. Fetsov}, title = {Stationary regimes of cooling porous objects with periodically distributed sources of energy release}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {51--62}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/} }
TY - JOUR AU - N. A. Lutsenko AU - S. S. Fetsov TI - Stationary regimes of cooling porous objects with periodically distributed sources of energy release JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 51 EP - 62 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/ LA - ru ID - SJIM_2017_20_3_a5 ER -
%0 Journal Article %A N. A. Lutsenko %A S. S. Fetsov %T Stationary regimes of cooling porous objects with periodically distributed sources of energy release %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 51-62 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/ %G ru %F SJIM_2017_20_3_a5
N. A. Lutsenko; S. S. Fetsov. Stationary regimes of cooling porous objects with periodically distributed sources of energy release. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 51-62. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/
[1] Maslov V. P., Myasnikov V. P., Danilov V. G., Matematicheskoe modelirovanie avariinogo bloka Chernobylskoi AES, Nauka, M., 1987 | MR
[2] Maslov V. P., Molotkov I. A., “Uslovie otsutstviya peregreva v reaktore, otsenka kriticheskoi konstanty”, Dokl. AN, 415:4 (2007), 475–477 | MR | Zbl
[3] Maslov V. P., Molotkov I. A., “Perekhod ot statsionarnogo okhlazhdeniya k peregrevu v avariinom reaktore”, Dokl. AN, 418:4 (2008), 482–485 | MR | Zbl
[4] Maslov V. P., Molotkov I. A., “Avariinyi reaktor v rezhime peregreva”, Dokl. AN, 421:4 (2008), 482–485 | MR | Zbl
[5] Molotkov I. A., “Lokalizatsiya teplovoi energii v avariinom reaktore v protsesse ego peregreva”, Dokl. AN, 422:5 (2008), 608–611 | MR | Zbl
[6] Maslov V. P., Molotkov I. A., “Vysokotemperaturnye protsessy v poristoi srede”, Teplofizika vysokikh temperatur, 47:2 (2009), 242–246
[7] Lutsenko N. A., “Odnomernyi statsionarnyi rezhim filtratsii gaza cherez sloi nepodvizhnogo teplovydelyayuschego kondensirovannogo materiala”, Dalnevost. mat. zhurn., 3:1 (2002), 123–130
[8] Lutsenko N. A., “Nestatsionarnye rezhimy okhlazhdeniya poristogo teplovydelyayuschego elementa”, Mat. modelirovanie, 17:3 (2005), 120–128 | Zbl
[9] Levin V. A., Lutsenko N. A., “Vozniknovenie neustoichivykh rezhimov okhlazhdeniya poristogo teplovydelyayuschego elementa pri dokriticheskikh kraevykh usloviyakh”, Gorenie i plazmokhimiya, 3:2 (2005), 81–90
[10] Levin V. A., Lutsenko N. A., “Techenie gaza cherez poristuyu teplovydelyayuschuyu sredu pri uchete temperaturnoi zavisimosti vyazkosti gaza”, Inzh.-fiz. zhurn., 79:1 (2006), 35–40
[11] Levin V. A., Lutsenko N. A., “Neodnoznachnoe vliyanie teploprovodnosti pri dvizhenii gaza cherez poristye sredy s ochagami energovydeleniya”, Dokl. AN, 462:4 (2015), 418–421 | DOI
[12] Levin V. A., Lutsenko N. A., “Chislennoe modelirovanie dvumernykh nestatsionarnykh techenii gaza cherez poristye teplovydelyayuschie elementy”, Vychisl. tekhnologii, 11:6 (2006), 44–58 | Zbl
[13] Levin V. A., Lutsenko N. A., “Nestatsionarnye techeniya gaza cherez osesimmetrichnye poristye teplovydelyayuschie ob'ekty”, Mat. modelirovanie, 22:3 (2010), 26–44 | Zbl
[14] Levin V. A., Lutsenko N. A., “Dvizhenie gaza cherez poristye ob'ekty s neravnomernym lokalnym raspredeleniem istochnikov teplovydeleniya”, Teplofizika i aeromekhanika, 15:3 (2008), 407–417
[15] Lutsenko N. A., “Numerical modeling of unsteady gas flow through the porous heat-evolutional objects with partial closure of the objects outlet”, Internat. J. Heat and Mass Transfer, 72 (2014), 602–608 | DOI
[16] Levin V. A., Lutsenko N. A., “Modelirovanie dvumernykh nestatsionarnykh techenii gaza v samorazogrevayuschikhsya poligonakh tverdykh bytovykh otkhodov”, Vychisl. mekhanika sploshnykh sred, 4:1 (2011), 55–64
[17] Teplitskii Yu. S., Kovenskii V. I., “Termomekhanika teplovydelyayuschego zernistogo sloya”, Inzh.-fiz. zhurn., 81:4 (2008), 637–645
[18] Teplitskii Yu. S., Kovenskii V. I., “O termomekhanike teplovydelyayuschego sloya pri peremennom razmere chastits”, Inzh.-fiz. zhurn., 84:5 (2011), 933–937
[19] Kovenskii G. I., Teplitskii Yu. S., Kovenskii V. I., “O svobodnoi konvektsii v teplovydelyayuschem zernistom sloe”, Inzh.-fiz. zhurn., 83:2 (2010), 229–234
[20] Aldushin A. P., Merzhanov A. G., “Teoriya filtratsionnogo goreniya: obschie predstavleniya i sostoyanie issledovanii”, Rasprostranenie teplovykh voln v geterogennykh sredakh, Nauka, Novosibirsk, 1988, 9–52
[21] Manelis G. B., Glazov S. V., Salganskii E. A., Lempert D. B., “Avtovolnovye protsessy pri filtratsionnom gorenii v protivotochnykh sistemakh”, Usp. khimii, 81:9 (2012), 855–873
[22] Lutsenko N. A., “Modeling of heterogeneous combustion in porous media under free convection”, Proc. Combustion Institute, 34:2 (2013), 2289–2294 | DOI
[23] Lutsenko N. A., Levin V. A., “Effect of gravity field and pressure difference on heterogeneous combustion in porous media”, Combustion Sci. Technology, 186:10–11 (2014), 1410–1421 | DOI
[24] Lutsenko N. A., Sorokova S. N., “Numerical method for investigation of 1D processes in porous media with heterogeneous reactions when flow rate of oxidant regulates itself”, Adv. Materials Res., 880 (2014), 115–120 | DOI
[25] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR
[26] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR
[27] Pismennyi D. T., Konspekt lektsii po vysshei matematike, Airis-press, M., 2009
[28] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR