Stationary regimes of cooling porous objects with periodically distributed sources of energy release
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a one-dimensional steady-state regime of a gas flow through porous objects with periodically distributed intensity of energy release under a given pressure difference on the open boundaries of the object, i.e., under self-regulation of the gas moving through the object. The obtained numerical-analytical solution to the problem is analyzed in a large range of the defining parameters; and the basic regularities of the studied process are revealed. It is shown that, under a periodical distribution of energy release sources, the dependencies of the phase temperatures, the filtration velocity, and the density on the height of the object are oscillatory but the pressure changes monotonically. It is found that the local maxima of the temperature of the solid medium and energy release differ, and their local minima can coincide only at those points where there is no energy release. We show that, the highest heating and other parameters under a periodical distribution of energy release can differ substantially from those under uniform energy release with the same total heat release. We also found that when the frequency of the heat-release intensity oscillations increases, the values of all sought parameters converge to those of the uniform energy release with the same total heat release as in the case of any integer even frequencies.
Keywords: porous medium, heat release.
Mots-clés : gas filtration
@article{SJIM_2017_20_3_a5,
     author = {N. A. Lutsenko and S. S. Fetsov},
     title = {Stationary regimes of cooling porous objects with periodically distributed sources of energy release},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/}
}
TY  - JOUR
AU  - N. A. Lutsenko
AU  - S. S. Fetsov
TI  - Stationary regimes of cooling porous objects with periodically distributed sources of energy release
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 51
EP  - 62
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/
LA  - ru
ID  - SJIM_2017_20_3_a5
ER  - 
%0 Journal Article
%A N. A. Lutsenko
%A S. S. Fetsov
%T Stationary regimes of cooling porous objects with periodically distributed sources of energy release
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 51-62
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/
%G ru
%F SJIM_2017_20_3_a5
N. A. Lutsenko; S. S. Fetsov. Stationary regimes of cooling porous objects with periodically distributed sources of energy release. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 51-62. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a5/

[1] Maslov V. P., Myasnikov V. P., Danilov V. G., Matematicheskoe modelirovanie avariinogo bloka Chernobylskoi AES, Nauka, M., 1987 | MR

[2] Maslov V. P., Molotkov I. A., “Uslovie otsutstviya peregreva v reaktore, otsenka kriticheskoi konstanty”, Dokl. AN, 415:4 (2007), 475–477 | MR | Zbl

[3] Maslov V. P., Molotkov I. A., “Perekhod ot statsionarnogo okhlazhdeniya k peregrevu v avariinom reaktore”, Dokl. AN, 418:4 (2008), 482–485 | MR | Zbl

[4] Maslov V. P., Molotkov I. A., “Avariinyi reaktor v rezhime peregreva”, Dokl. AN, 421:4 (2008), 482–485 | MR | Zbl

[5] Molotkov I. A., “Lokalizatsiya teplovoi energii v avariinom reaktore v protsesse ego peregreva”, Dokl. AN, 422:5 (2008), 608–611 | MR | Zbl

[6] Maslov V. P., Molotkov I. A., “Vysokotemperaturnye protsessy v poristoi srede”, Teplofizika vysokikh temperatur, 47:2 (2009), 242–246

[7] Lutsenko N. A., “Odnomernyi statsionarnyi rezhim filtratsii gaza cherez sloi nepodvizhnogo teplovydelyayuschego kondensirovannogo materiala”, Dalnevost. mat. zhurn., 3:1 (2002), 123–130

[8] Lutsenko N. A., “Nestatsionarnye rezhimy okhlazhdeniya poristogo teplovydelyayuschego elementa”, Mat. modelirovanie, 17:3 (2005), 120–128 | Zbl

[9] Levin V. A., Lutsenko N. A., “Vozniknovenie neustoichivykh rezhimov okhlazhdeniya poristogo teplovydelyayuschego elementa pri dokriticheskikh kraevykh usloviyakh”, Gorenie i plazmokhimiya, 3:2 (2005), 81–90

[10] Levin V. A., Lutsenko N. A., “Techenie gaza cherez poristuyu teplovydelyayuschuyu sredu pri uchete temperaturnoi zavisimosti vyazkosti gaza”, Inzh.-fiz. zhurn., 79:1 (2006), 35–40

[11] Levin V. A., Lutsenko N. A., “Neodnoznachnoe vliyanie teploprovodnosti pri dvizhenii gaza cherez poristye sredy s ochagami energovydeleniya”, Dokl. AN, 462:4 (2015), 418–421 | DOI

[12] Levin V. A., Lutsenko N. A., “Chislennoe modelirovanie dvumernykh nestatsionarnykh techenii gaza cherez poristye teplovydelyayuschie elementy”, Vychisl. tekhnologii, 11:6 (2006), 44–58 | Zbl

[13] Levin V. A., Lutsenko N. A., “Nestatsionarnye techeniya gaza cherez osesimmetrichnye poristye teplovydelyayuschie ob'ekty”, Mat. modelirovanie, 22:3 (2010), 26–44 | Zbl

[14] Levin V. A., Lutsenko N. A., “Dvizhenie gaza cherez poristye ob'ekty s neravnomernym lokalnym raspredeleniem istochnikov teplovydeleniya”, Teplofizika i aeromekhanika, 15:3 (2008), 407–417

[15] Lutsenko N. A., “Numerical modeling of unsteady gas flow through the porous heat-evolutional objects with partial closure of the objects outlet”, Internat. J. Heat and Mass Transfer, 72 (2014), 602–608 | DOI

[16] Levin V. A., Lutsenko N. A., “Modelirovanie dvumernykh nestatsionarnykh techenii gaza v samorazogrevayuschikhsya poligonakh tverdykh bytovykh otkhodov”, Vychisl. mekhanika sploshnykh sred, 4:1 (2011), 55–64

[17] Teplitskii Yu. S., Kovenskii V. I., “Termomekhanika teplovydelyayuschego zernistogo sloya”, Inzh.-fiz. zhurn., 81:4 (2008), 637–645

[18] Teplitskii Yu. S., Kovenskii V. I., “O termomekhanike teplovydelyayuschego sloya pri peremennom razmere chastits”, Inzh.-fiz. zhurn., 84:5 (2011), 933–937

[19] Kovenskii G. I., Teplitskii Yu. S., Kovenskii V. I., “O svobodnoi konvektsii v teplovydelyayuschem zernistom sloe”, Inzh.-fiz. zhurn., 83:2 (2010), 229–234

[20] Aldushin A. P., Merzhanov A. G., “Teoriya filtratsionnogo goreniya: obschie predstavleniya i sostoyanie issledovanii”, Rasprostranenie teplovykh voln v geterogennykh sredakh, Nauka, Novosibirsk, 1988, 9–52

[21] Manelis G. B., Glazov S. V., Salganskii E. A., Lempert D. B., “Avtovolnovye protsessy pri filtratsionnom gorenii v protivotochnykh sistemakh”, Usp. khimii, 81:9 (2012), 855–873

[22] Lutsenko N. A., “Modeling of heterogeneous combustion in porous media under free convection”, Proc. Combustion Institute, 34:2 (2013), 2289–2294 | DOI

[23] Lutsenko N. A., Levin V. A., “Effect of gravity field and pressure difference on heterogeneous combustion in porous media”, Combustion Sci. Technology, 186:10–11 (2014), 1410–1421 | DOI

[24] Lutsenko N. A., Sorokova S. N., “Numerical method for investigation of 1D processes in porous media with heterogeneous reactions when flow rate of oxidant regulates itself”, Adv. Materials Res., 880 (2014), 115–120 | DOI

[25] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR

[26] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR

[27] Pismennyi D. T., Konspekt lektsii po vysshei matematike, Airis-press, M., 2009

[28] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR