Isoepiphanic forms of pressure vessels
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized statements of the optimization problems of the geometric shape of simple and composed domains under given constrains. Alongside the condition of the minimality of the boundary of the domain, some additional constraints are introduced on pointwise or contour “fastening” of the domain. The obtained results can be used for the optimal design of tanks and pressure vessels including multisection ones.
Keywords: pressure vessels, isoperimetric problems, the minimum weight.
@article{SJIM_2017_20_3_a0,
     author = {S. N. Astrakov and S. K. Golushko and L. A. Korolenko},
     title = {Isoepiphanic forms of pressure vessels},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a0/}
}
TY  - JOUR
AU  - S. N. Astrakov
AU  - S. K. Golushko
AU  - L. A. Korolenko
TI  - Isoepiphanic forms of pressure vessels
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 3
EP  - 10
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a0/
LA  - ru
ID  - SJIM_2017_20_3_a0
ER  - 
%0 Journal Article
%A S. N. Astrakov
%A S. K. Golushko
%A L. A. Korolenko
%T Isoepiphanic forms of pressure vessels
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 3-10
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a0/
%G ru
%F SJIM_2017_20_3_a0
S. N. Astrakov; S. K. Golushko; L. A. Korolenko. Isoepiphanic forms of pressure vessels. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/SJIM_2017_20_3_a0/