On weak solutions to evolution equations of viscoelastic fluid flows
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 21-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system of nonlinear equations describing unsteady flows of a viscoelastic fluid of Oldroyd type in a bounded three-dimensional domain with mixed boundary conditions. On one part of the boundary, the Navier slip condition is given, while on the other one, the no-slip condition is used. We prove the theorem on the existence, uniqueness, and energy estimates for weak solutions.
Keywords: initial boundary-value problem, weak solution, viscoelastic fluid, Oldroyd model, Navier slip boundary condition.
@article{SJIM_2017_20_2_a2,
     author = {E. S. Baranovskii},
     title = {On weak solutions to evolution equations of viscoelastic fluid flows},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - On weak solutions to evolution equations of viscoelastic fluid flows
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 21
EP  - 32
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/
LA  - ru
ID  - SJIM_2017_20_2_a2
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T On weak solutions to evolution equations of viscoelastic fluid flows
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 21-32
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/
%G ru
%F SJIM_2017_20_2_a2
E. S. Baranovskii. On weak solutions to evolution equations of viscoelastic fluid flows. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/