Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_2_a2, author = {E. S. Baranovskii}, title = {On weak solutions to evolution equations of viscoelastic fluid flows}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {21--32}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/} }
TY - JOUR AU - E. S. Baranovskii TI - On weak solutions to evolution equations of viscoelastic fluid flows JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 21 EP - 32 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/ LA - ru ID - SJIM_2017_20_2_a2 ER -
E. S. Baranovskii. On weak solutions to evolution equations of viscoelastic fluid flows. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/
[1] Reiner M., Reologiya, Fizmatgiz, M., 1965
[2] Astarita G., Marucci G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, N.Y., 1974
[3] Renardy M., “Existence of slow steady flows of viscoelastic fluids with differential constitutive equations”, Z. Angew. Math. Mech., 65 (1985), 449–451 | DOI | MR | Zbl
[4] Kotsiolis A. A., Oskolkov A. P., “Solvability of the basic initial-boundary problem for the equations of motion of an Oldroyd fluid on $(0,\infty)$ and the behavior of its solutions as $t\to+\infty$”, J. Soviet Math., 46:1 (1989), 1595–1598 | DOI | MR | Zbl
[5] Guillopé C., Saut J.-C., “Existence results for the flow of viscoelastic fluids with a differential constitutive law”, Nonlinear Anal., 15 (1990), 849–869 | DOI | MR | Zbl
[6] Turganbaev E. M., “Nachalno-kraevye zadachi dlya uravnenii vyazkouprugoizhidkosti tipa Oldroida”, Sib. mat. zhurn., 36:2 (1995), 444–458 | MR | Zbl
[7] Lions P. L., Masmoudi N., “Global solutions for some Oldroyd models of non-Newtonian flows”, Chinese Ann. Math. Ser. B, 21 (2000), 131–146 | DOI | MR | Zbl
[8] Baranovskii E. S., “O statsionarnom dvizhenii vyazkouprugoizhidkosti tipa Oldroida”, Mat. sb., 205:6 (2014), 3–16 | DOI | MR | Zbl
[9] Le Roux C., “On flows of viscoelastic fluids of Oldroyd type with wall slip”, J. Math. Fluid Mechanics, 16 (2014), 335–350 | DOI | MR | Zbl
[10] Doubova A., Fernandez-Cara E., “On the control of viscoelastic Jeffreys fluids”, Systems Control Lett., 21 (2012), 573–579 | DOI | MR
[11] Baranovskii E. S., “Zadacha optimalnogo upravleniya statsionarnym techeniem sredy Dzheffrisa pri uslovii proskalzyvaniya na granitse”, Sib. zhurn. industr. matematiki, 17:1 (2014), 18–27 | MR | Zbl
[12] Saut J.-C., “Lectures on the mathematical theory of viscoelastic fluids”, Lect. Anal. Nonlinear Partial Differential Equations, Ser. Morningside Lect. Math., 3, Internat. Press, Somerville, Massachusetts, 2013, 325–393 | MR | Zbl
[13] Artemov M. A., Baranovskii E. S., “Mixed boundary-value problems for motion equations of a viscoelastic medium”, Electron. J. Differential Equations, 2015:252 (2015), 1–9 | MR
[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[15] Solonnikov V. A., Schadilov V. E., “Ob odnoi kraevoi zadache dlya statsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN SSSR, 125, 1973, 196–210 | MR | Zbl
[16] Ragulin V. V., “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya i napora”, Dinamika sploshnoi sredy, 27, 1976, 78–92 | MR
[17] Kazhikhov A. V., Ragulin V. V., “O zadache protekaniya dlya uravnenii idealnoi zhidkosti”, Zap. nauchn. sem. LOMI, 96, 1980, 84–96 | MR | Zbl
[18] Pironneau O., “Conditions aux limites sur la pression pour les équations de Stokes et de Navier–Stokes”, Comptes Rendus Acad. Sci. Ser. I Math., 303 (1986), 403–406 | MR | Zbl
[19] Conca C., Murat F., Pironneau O., “The Stokes and Navier-Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 279–318 | MR | Zbl
[20] Illarionov A. A., Chebotarev A. Yu., “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii Nave–Stoksa”, Differents. uravneniya, 37:5 (2001), 689–695 | MR | Zbl
[21] Kim T., Cao D., “Some properties on the surfaces of vector fields and its application to the Stokes and Navier–Stokes problem with mixed boundary conditions”, Nonlinear Anal., 113 (2015), 94–114 | DOI | MR | Zbl
[22] Alekseev G. V., “Smeshannye kraevye zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 56:8 (2016), 1441–1454 | DOI | Zbl
[23] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[24] Navier C. L. M. H., “Mémoire sur les lois du mouvement des fluides”, Mem. Acad. Roy. Sci. Paris, 6 (1823), 389–416
[25] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer-Verl., N.Y., 2011 | MR | Zbl
[26] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR
[27] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR
[28] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR