On weak solutions to evolution equations of viscoelastic fluid flows
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system of nonlinear equations describing unsteady flows of a viscoelastic fluid of Oldroyd type in a bounded three-dimensional domain with mixed boundary conditions. On one part of the boundary, the Navier slip condition is given, while on the other one, the no-slip condition is used. We prove the theorem on the existence, uniqueness, and energy estimates for weak solutions.
Keywords: initial boundary-value problem, weak solution, viscoelastic fluid, Oldroyd model, Navier slip boundary condition.
@article{SJIM_2017_20_2_a2,
     author = {E. S. Baranovskii},
     title = {On weak solutions to evolution equations of viscoelastic fluid flows},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - On weak solutions to evolution equations of viscoelastic fluid flows
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 21
EP  - 32
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/
LA  - ru
ID  - SJIM_2017_20_2_a2
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T On weak solutions to evolution equations of viscoelastic fluid flows
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 21-32
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/
%G ru
%F SJIM_2017_20_2_a2
E. S. Baranovskii. On weak solutions to evolution equations of viscoelastic fluid flows. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/SJIM_2017_20_2_a2/

[1] Reiner M., Reologiya, Fizmatgiz, M., 1965

[2] Astarita G., Marucci G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, N.Y., 1974

[3] Renardy M., “Existence of slow steady flows of viscoelastic fluids with differential constitutive equations”, Z. Angew. Math. Mech., 65 (1985), 449–451 | DOI | MR | Zbl

[4] Kotsiolis A. A., Oskolkov A. P., “Solvability of the basic initial-boundary problem for the equations of motion of an Oldroyd fluid on $(0,\infty)$ and the behavior of its solutions as $t\to+\infty$”, J. Soviet Math., 46:1 (1989), 1595–1598 | DOI | MR | Zbl

[5] Guillopé C., Saut J.-C., “Existence results for the flow of viscoelastic fluids with a differential constitutive law”, Nonlinear Anal., 15 (1990), 849–869 | DOI | MR | Zbl

[6] Turganbaev E. M., “Nachalno-kraevye zadachi dlya uravnenii vyazkouprugoizhidkosti tipa Oldroida”, Sib. mat. zhurn., 36:2 (1995), 444–458 | MR | Zbl

[7] Lions P. L., Masmoudi N., “Global solutions for some Oldroyd models of non-Newtonian flows”, Chinese Ann. Math. Ser. B, 21 (2000), 131–146 | DOI | MR | Zbl

[8] Baranovskii E. S., “O statsionarnom dvizhenii vyazkouprugoizhidkosti tipa Oldroida”, Mat. sb., 205:6 (2014), 3–16 | DOI | MR | Zbl

[9] Le Roux C., “On flows of viscoelastic fluids of Oldroyd type with wall slip”, J. Math. Fluid Mechanics, 16 (2014), 335–350 | DOI | MR | Zbl

[10] Doubova A., Fernandez-Cara E., “On the control of viscoelastic Jeffreys fluids”, Systems Control Lett., 21 (2012), 573–579 | DOI | MR

[11] Baranovskii E. S., “Zadacha optimalnogo upravleniya statsionarnym techeniem sredy Dzheffrisa pri uslovii proskalzyvaniya na granitse”, Sib. zhurn. industr. matematiki, 17:1 (2014), 18–27 | MR | Zbl

[12] Saut J.-C., “Lectures on the mathematical theory of viscoelastic fluids”, Lect. Anal. Nonlinear Partial Differential Equations, Ser. Morningside Lect. Math., 3, Internat. Press, Somerville, Massachusetts, 2013, 325–393 | MR | Zbl

[13] Artemov M. A., Baranovskii E. S., “Mixed boundary-value problems for motion equations of a viscoelastic medium”, Electron. J. Differential Equations, 2015:252 (2015), 1–9 | MR

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[15] Solonnikov V. A., Schadilov V. E., “Ob odnoi kraevoi zadache dlya statsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN SSSR, 125, 1973, 196–210 | MR | Zbl

[16] Ragulin V. V., “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya i napora”, Dinamika sploshnoi sredy, 27, 1976, 78–92 | MR

[17] Kazhikhov A. V., Ragulin V. V., “O zadache protekaniya dlya uravnenii idealnoi zhidkosti”, Zap. nauchn. sem. LOMI, 96, 1980, 84–96 | MR | Zbl

[18] Pironneau O., “Conditions aux limites sur la pression pour les équations de Stokes et de Navier–Stokes”, Comptes Rendus Acad. Sci. Ser. I Math., 303 (1986), 403–406 | MR | Zbl

[19] Conca C., Murat F., Pironneau O., “The Stokes and Navier-Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 279–318 | MR | Zbl

[20] Illarionov A. A., Chebotarev A. Yu., “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii Nave–Stoksa”, Differents. uravneniya, 37:5 (2001), 689–695 | MR | Zbl

[21] Kim T., Cao D., “Some properties on the surfaces of vector fields and its application to the Stokes and Navier–Stokes problem with mixed boundary conditions”, Nonlinear Anal., 113 (2015), 94–114 | DOI | MR | Zbl

[22] Alekseev G. V., “Smeshannye kraevye zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 56:8 (2016), 1441–1454 | DOI | Zbl

[23] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[24] Navier C. L. M. H., “Mémoire sur les lois du mouvement des fluides”, Mem. Acad. Roy. Sci. Paris, 6 (1823), 389–416

[25] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer-Verl., N.Y., 2011 | MR | Zbl

[26] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR

[27] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[28] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR