Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2017_20_1_a5, author = {V. V. Karpov and A. A. Semenov}, title = {Mathematical models and algorithms for studying the strength and stability of shell structures}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {53--65}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/} }
TY - JOUR AU - V. V. Karpov AU - A. A. Semenov TI - Mathematical models and algorithms for studying the strength and stability of shell structures JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2017 SP - 53 EP - 65 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/ LA - ru ID - SJIM_2017_20_1_a5 ER -
%0 Journal Article %A V. V. Karpov %A A. A. Semenov %T Mathematical models and algorithms for studying the strength and stability of shell structures %J Sibirskij žurnal industrialʹnoj matematiki %D 2017 %P 53-65 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/ %G ru %F SJIM_2017_20_1_a5
V. V. Karpov; A. A. Semenov. Mathematical models and algorithms for studying the strength and stability of shell structures. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/
[1] Rukavishnikov V. A., Tkachenko O. P., “Priblizhennoe reshenie nelineinoi zadachi o deformirovanii podzemnogo truboprovoda”, Sib. zhurn. industr. matematiki, 13:4 (2010), 97–108 | MR | Zbl
[2] Qu Y., Wu S., Chen Y., Hua H., “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach”, Internat. J. Mech. Sci., 69 (2013), 72–84 | DOI
[3] Buermann P., Rolfes R., Tessmer J., Schagerl M., “A semi-analytical model for local postbuckling analysis of stringer- and frame-stiffened cylindrical panels”, Thin-Walled Structures, 44 (2006), 102–114 | DOI
[4] Arani G., Loghman A., Mosallaie Barzoki A. A., Kolahchi R., “Elastic buckling analysis of Rrng and stringer-stiffened cylindrical shells under general pressure and axial compression via the Ritz method”, J. Solid Mech., 2:4 (2010), 332–347
[5] Yankovskii A. P., “Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model”, J. Appl. Mech. Tech. Phys., 55:3 (2014), 506–514 | DOI | Zbl
[6] Huang N.-N., “Creep deflection of viscoelastic laminated cylindrical panelswith initial deflection under axial compression”, Composites B, 30 (1999), 145–156 | DOI
[7] Guz A. N., Chernyshenko I. S., Georgievskii V. P., Maksimyuk V. A., “O napryazhennom sostoyanii tonkostennykh elementov konstruktsii, izgotovlennykh iz nelineino-uprugikh kompozitnykh materialov”, Prikl. mekhanika, 24:4 (1988), 25–32 | MR
[8] Maksimyuk V. A., Storozhuk E. A., Chernyshenko I. S., “Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions”, Internat. Appl. Mech., 49:6 (2013), 685–692 | DOI | MR
[9] Singh V. K., Panda S. K., “Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels”, Thin-Walled Structures, 85 (2014), 341–349 | DOI
[10] Oliveira B. F., Creus G. J., “Viscoelastic failure analysis of composite plates and shells”, Composite Structures, 49 (2000), 369–384 | DOI
[11] Karpov V. V., Ignatev O. V., Salnikov A. Yu., Nelineinye matematicheskie modeli deformirovaniya obolochek peremennoi tolschiny i algoritmy ikh issledovaniya, Izd-vo ASV, M., 2002
[12] Petrov V. V., Metod posledovatelnykh nagruzhenii v nelineinoi teorii plastinok i obolochek, Izd-vo Saratov. gos. un-ta, Saratov, 1975
[13] Kuznetsov E. B., “Continuation of solutions in multiparameter approximation of curves and surfaces”, Comput. Math. Math. Phys., 52:8 (2012), 1149–1162 | DOI | MR | Zbl
[14] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya. Ch. 2: Vychislitelnyi eksperiment pri staticheskom mekhanicheskom vozdeistvii, Fizmatlit, M., 2011
[15] Baranova D. A., “Algoritm issledovaniya ustoichivosti podkreplennykh obolochek vrascheniya na osnove metoda L-BFGS”, Promyshlennoe i grazhdanskoe stroitelstvo, 2012, no. 3, 58–59
[16] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972
[17] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya Ch. 1: Modeli i algoritmy issledovaniya prochnosti i ustoichivosti podkreplennykh obolochek vrascheniya, Fizmatlit, M., 2010
[18] Lomakin V. A., “O teorii nelineinoi uprugosti i plastichnosti anizotropnykh sred”, Izv. AN SSSR. Mekhanika i mashinostroenie, 1960, no. 4, 60–64 | MR | Zbl
[19] Maksimyuk V. A., Chernyshenko I. S., “Smeshannye funktsionaly v teorii nelineino-uprugogo deformirovaniya obolochek”, Prikl. mekhanika, 40:11 (2004), 45–83 | MR
[20] Goldenblat I. I., Bazhanov V. L., Kopnov V. A., Dlitelnaya prochnost v mashinostroenii, Mashinostroenie, M., 1977
[21] Karpov V. V., Semenov A. A., “Bezrazmernye parametry v teorii podkreplennykh obolochek”, Vestn. PNIPU. Mekhanika, 2015, no. 3, 74–94