Mathematical models and algorithms for studying the strength and stability of shell structures
Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe several mathematical models of deformation of supported shell structures including those that take into account various properties of the material. We consider linear-elastic and physically nonlinear problems and also creep problems for structures of orthotropic and isotropic materials. All models are based on the functional of the total potential energy of the deformation of the shell. The geometric nonlinearity and transverse shifts are accounted for. Ribs are introduced as discretely as by the structural anisotropy method. We demonstrate three different algorithms for the study of the strength and stability of the shells under consideration each of which is most effective for its range of tasks.
Keywords: mathematical model, physical nonlinearity, creep, orthotropy, shell, strength, stability, algorithm, Ritz method, structural anisotropy method.
@article{SJIM_2017_20_1_a5,
     author = {V. V. Karpov and A. A. Semenov},
     title = {Mathematical models and algorithms for studying the strength and stability of shell structures},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/}
}
TY  - JOUR
AU  - V. V. Karpov
AU  - A. A. Semenov
TI  - Mathematical models and algorithms for studying the strength and stability of shell structures
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2017
SP  - 53
EP  - 65
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/
LA  - ru
ID  - SJIM_2017_20_1_a5
ER  - 
%0 Journal Article
%A V. V. Karpov
%A A. A. Semenov
%T Mathematical models and algorithms for studying the strength and stability of shell structures
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2017
%P 53-65
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/
%G ru
%F SJIM_2017_20_1_a5
V. V. Karpov; A. A. Semenov. Mathematical models and algorithms for studying the strength and stability of shell structures. Sibirskij žurnal industrialʹnoj matematiki, Tome 20 (2017) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/SJIM_2017_20_1_a5/

[1] Rukavishnikov V. A., Tkachenko O. P., “Priblizhennoe reshenie nelineinoi zadachi o deformirovanii podzemnogo truboprovoda”, Sib. zhurn. industr. matematiki, 13:4 (2010), 97–108 | MR | Zbl

[2] Qu Y., Wu S., Chen Y., Hua H., “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach”, Internat. J. Mech. Sci., 69 (2013), 72–84 | DOI

[3] Buermann P., Rolfes R., Tessmer J., Schagerl M., “A semi-analytical model for local postbuckling analysis of stringer- and frame-stiffened cylindrical panels”, Thin-Walled Structures, 44 (2006), 102–114 | DOI

[4] Arani G., Loghman A., Mosallaie Barzoki A. A., Kolahchi R., “Elastic buckling analysis of Rrng and stringer-stiffened cylindrical shells under general pressure and axial compression via the Ritz method”, J. Solid Mech., 2:4 (2010), 332–347

[5] Yankovskii A. P., “Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model”, J. Appl. Mech. Tech. Phys., 55:3 (2014), 506–514 | DOI | Zbl

[6] Huang N.-N., “Creep deflection of viscoelastic laminated cylindrical panelswith initial deflection under axial compression”, Composites B, 30 (1999), 145–156 | DOI

[7] Guz A. N., Chernyshenko I. S., Georgievskii V. P., Maksimyuk V. A., “O napryazhennom sostoyanii tonkostennykh elementov konstruktsii, izgotovlennykh iz nelineino-uprugikh kompozitnykh materialov”, Prikl. mekhanika, 24:4 (1988), 25–32 | MR

[8] Maksimyuk V. A., Storozhuk E. A., Chernyshenko I. S., “Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions”, Internat. Appl. Mech., 49:6 (2013), 685–692 | DOI | MR

[9] Singh V. K., Panda S. K., “Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels”, Thin-Walled Structures, 85 (2014), 341–349 | DOI

[10] Oliveira B. F., Creus G. J., “Viscoelastic failure analysis of composite plates and shells”, Composite Structures, 49 (2000), 369–384 | DOI

[11] Karpov V. V., Ignatev O. V., Salnikov A. Yu., Nelineinye matematicheskie modeli deformirovaniya obolochek peremennoi tolschiny i algoritmy ikh issledovaniya, Izd-vo ASV, M., 2002

[12] Petrov V. V., Metod posledovatelnykh nagruzhenii v nelineinoi teorii plastinok i obolochek, Izd-vo Saratov. gos. un-ta, Saratov, 1975

[13] Kuznetsov E. B., “Continuation of solutions in multiparameter approximation of curves and surfaces”, Comput. Math. Math. Phys., 52:8 (2012), 1149–1162 | DOI | MR | Zbl

[14] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya. Ch. 2: Vychislitelnyi eksperiment pri staticheskom mekhanicheskom vozdeistvii, Fizmatlit, M., 2011

[15] Baranova D. A., “Algoritm issledovaniya ustoichivosti podkreplennykh obolochek vrascheniya na osnove metoda L-BFGS”, Promyshlennoe i grazhdanskoe stroitelstvo, 2012, no. 3, 58–59

[16] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972

[17] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya Ch. 1: Modeli i algoritmy issledovaniya prochnosti i ustoichivosti podkreplennykh obolochek vrascheniya, Fizmatlit, M., 2010

[18] Lomakin V. A., “O teorii nelineinoi uprugosti i plastichnosti anizotropnykh sred”, Izv. AN SSSR. Mekhanika i mashinostroenie, 1960, no. 4, 60–64 | MR | Zbl

[19] Maksimyuk V. A., Chernyshenko I. S., “Smeshannye funktsionaly v teorii nelineino-uprugogo deformirovaniya obolochek”, Prikl. mekhanika, 40:11 (2004), 45–83 | MR

[20] Goldenblat I. I., Bazhanov V. L., Kopnov V. A., Dlitelnaya prochnost v mashinostroenii, Mashinostroenie, M., 1977

[21] Karpov V. V., Semenov A. A., “Bezrazmernye parametry v teorii podkreplennykh obolochek”, Vestn. PNIPU. Mekhanika, 2015, no. 3, 74–94