A method of calculating dynamical systems with lumped parameters, accounting for the error of input data
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose and justify a bilateral method for the calculation of dynamical systems with lumped parameters which takes into account the error of input data. We give a few examples demonstrating the efficiency of the method.
Keywords: interval method, bilateral method, error, guaranteed accuracy, dynamical system.
@article{SJIM_2016_19_4_a7,
     author = {S. A. Nekrasov},
     title = {A method of calculating dynamical systems with lumped parameters, accounting for the error of input data},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--80},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a7/}
}
TY  - JOUR
AU  - S. A. Nekrasov
TI  - A method of calculating dynamical systems with lumped parameters, accounting for the error of input data
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 70
EP  - 80
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a7/
LA  - ru
ID  - SJIM_2016_19_4_a7
ER  - 
%0 Journal Article
%A S. A. Nekrasov
%T A method of calculating dynamical systems with lumped parameters, accounting for the error of input data
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 70-80
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a7/
%G ru
%F SJIM_2016_19_4_a7
S. A. Nekrasov. A method of calculating dynamical systems with lumped parameters, accounting for the error of input data. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 70-80. http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a7/

[1] Spravochnik po avtomaticheskomu upravleniyu, Nauka, M., 1987

[2] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR

[3] Dobronets B. S., Shaidurov V. V., Dvustoronnie metody, Nauka, Novosibirsk, 1990

[4] Nekrasov S. A., “A bilateral method of solving Cauchy problems”, USSR Comput. Math. and Math. Phys., 26:3 (1986), 83–86 | DOI | MR | Zbl

[5] Nekrasov S. A., “The construction of two-sided approximations to the solution of a Cauchy problem”, USSR Comput. Math. and Math. Phys., 28:3 (1988), 23–29 | DOI | MR | Zbl

[6] Nekrasov S. A., “Bilateral methods for the numerical integration of initial- and boundary-value problems”, Computat. Math. and Math. Phys., 35:10 (1995), 1189–1202 | MR | Zbl

[7] Nekrasov S. A., “Efficient two-sided methods for the Cauchy problem in the case of large integration intervals”, Differential Equations, 39:7 (2003), 1023–1027 | DOI | MR | Zbl

[8] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[9] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978

[10] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR

[11] Rogalev A. N., “Granitsy mnozhestv reshenii sistem obyknovennykh differentsialnykh uravnenii s intervalnymi nachalnymi dannymi”, Vychisl. tekhnologii, 9:1 (2004), 86–94 | Zbl