On the asymptotic optimality of orthoregressional estimates
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the orthoregressive (STLS) parameter estimates in simultaneous linear systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimates and thus become asymptotically best in the limit case of large variances of random coordinates on the manifold of solutions to the system observed with additive random perturbations.
Keywords: linear autonomous difference equation, parameter identification, orthoregressive estimate, STLS estimate, asymptotic efficiency.
@article{SJIM_2016_19_4_a5,
     author = {A. A. Lomov},
     title = {On the asymptotic optimality of  orthoregressional estimates},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On the asymptotic optimality of  orthoregressional estimates
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 51
EP  - 60
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/
LA  - ru
ID  - SJIM_2016_19_4_a5
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On the asymptotic optimality of  orthoregressional estimates
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 51-60
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/
%G ru
%F SJIM_2016_19_4_a5
A. A. Lomov. On the asymptotic optimality of  orthoregressional estimates. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 51-60. http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/

[1] Adcock R. J., “Note on the method of least squares”, The Analyst, 4 (1877), 183–184 | DOI

[2] Adcock R. J., “A problem in least squares”, The Analyst., 5 (1878), 53–54 | DOI

[3] Kummel C. H., “Reduction of observed equations which contain more then one observed quantity”, The Analyst., 6 (1879), 97–105 | DOI

[4] Pearson K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine, 6:2 (1901), 559–572 | DOI | Zbl

[5] Gauss K. F., Izbrannye geodezicheskie sochineniya, v. 1, Geodezizdat, M., 1957, 59–87

[6] Kramer G., Matematicheskie metody statistiki, Nauka, M., 1975 | MR

[7] Golub G. H., Van Loan C. F., “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17 (1980), 883–893 | DOI | MR | Zbl

[8] Koopmans T. C., Linear Regression Analysis of Economic Time Series, Haarlem, 1937

[9] Levin M. J., “Estimation of a system pulse transfer function in the presence of noise”, IEEE Trans. Automat Control, AC-9 (1964), 229–235 | DOI

[10] Markovsky I., Van Huffel S., “Overview of total least squares methods”, Signal Processing, 87 (2007), 2283–2302 | DOI | Zbl

[11] Egorshin A. O., “Vychislitelnye zamknutye metody identifikatsii lineinykh ob'ektov”, Optimalnye i samonastraivayuschiesya sistemy, Novosibirsk, 1971, 40–53

[12] Egorshin A. O., “Metod naimenshikh kvadratov i “bystrye”algoritmy v variatsionnykh zadachakh identifikatsii i filtratsii (metod VI)”, Avtometriya, 1988, no. 1, 30–42

[13] Moor De B., “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–207 | DOI | MR

[14] Lomov A. A., “Variatsionnye metody identifikatsii lineinykh dinamicheskikh sistem i problema lokalnykh ekstremumov”, Upravlenie bolshimi sistemami, 39, 2012, 53–94 URL: http://ubs.mtas.ru/upload/library/UBS3903.pdf

[15] Lomov A. A., “O sostoyatelnosti obobschennykh ortoregressionnykh otsenok parametrov lineinoi dinamicheskoi sistemy”, Cib. zhurn. industr. matematiki, 16:4(56) (2013), 87–93 | MR | Zbl

[16] Kahn M., Mackisack M. S., Osborne M. R., Smyth G. K., “On the consistency of Prony's method and related algorithms”, J. Comput. Graph. Statist., 1 (1992), 329–349 | MR

[17] Heij C., Scherrer W., “Consistency of system identification by global total least squares”, Automatica, 35 (1999), 993–1008 | DOI | MR | Zbl

[18] Kukush A., Markovsky I., Van Huffel S., “Consistency of the structured total least squares estimator in a multivariate errors-in-variables model”, J. Statist. Plann. Inference, 133:2 (2005), 315–358 | DOI | MR | Zbl

[19] Gleser L. J., “Estimation in a multivariate “errors in variables” regression model: large sample results”, Ann. Statist., 9:1 (1981), 24–44 | DOI | MR | Zbl

[20] Fuller W. A., Measurement Error Models, Wiley, N.Y., 1987 | MR | Zbl

[21] Lomov A. A., “Ortoregressionnye otsenki parametrov sistem lineinykh raznostnykh uravnenii”, Sib. zhurn. industr. matematiki, 8:3(23) (2005), 102–119 | MR | Zbl

[22] Lomov A. A., “Identifikatsiya lineinykh dinamicheskikh sistem po korotkim uchastkam perekhodnykh protsessov pri additivnykh izmeritelnykh vozmuscheniyakh”, Izvestiya RAN. TSU, 1997, no. 3, 20–26 | Zbl

[23] Lomov A. A., “Usloviya razlichimosti statsionarnykh lineinykh sistem”, Differents. uravneniya, 39:2 (2003), 261–266 | MR | Zbl

[24] Lomov A. A., “O razlichimosti statsionarnykh lineinykh sistem s koeffitsientami, zavisyaschimi ot parametra”, Sib. zhurn. industr. matematiki, 6:4(16) (2003), 60–66 | MR | Zbl

[25] Lemmerling Ph., Mastronardi N., Van Huffel S., “Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem”, Numer. Algorithms, 23 (2000), 371–392 | DOI | MR | Zbl

[26] Borovkov A. A., Matematicheskaya statistika, Nauka, Izd-vo In-ta matematiki, Novosibirsk, 1997 | MR

[27] Li R., Optimalnye otsenki, opredelenie kharakteristik i upravlenie, Nauka, M., 1966