On the asymptotic optimality of orthoregressional estimates
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 51-60

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the orthoregressive (STLS) parameter estimates in simultaneous linear systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimates and thus become asymptotically best in the limit case of large variances of random coordinates on the manifold of solutions to the system observed with additive random perturbations.
Keywords: linear autonomous difference equation, parameter identification, orthoregressive estimate, STLS estimate, asymptotic efficiency.
@article{SJIM_2016_19_4_a5,
     author = {A. A. Lomov},
     title = {On the asymptotic optimality of  orthoregressional estimates},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On the asymptotic optimality of  orthoregressional estimates
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 51
EP  - 60
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/
LA  - ru
ID  - SJIM_2016_19_4_a5
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On the asymptotic optimality of  orthoregressional estimates
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 51-60
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/
%G ru
%F SJIM_2016_19_4_a5
A. A. Lomov. On the asymptotic optimality of  orthoregressional estimates. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 51-60. http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a5/