Creep and stress relaxation in the material of a~cylindrical layer under it linear motion
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of large deformation theory, we consider the defomation of a material with nonlinear elactic and viscous properties in the space between two rigid coaxial cylindrical surfaces when the internal surface moves rectilinearly. We study the uniformly accelerated motion of the internal cylinder, its subsequent motions at a constant speed, and the subsequent uniformly retarded motion to a stop. We calculate the stresses, the reversible and irreversible deformations, the displacements and study the stress relaxation after the complete stop of the cylinder.
Keywords: large deformations, creep, elasticity, viscosity, stress relaxation.
@article{SJIM_2016_19_4_a4,
     author = {L. V. Kovtanyuk and G. L. Panchenko},
     title = {Creep and stress relaxation in the material of a~cylindrical layer under it linear motion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {44--50},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a4/}
}
TY  - JOUR
AU  - L. V. Kovtanyuk
AU  - G. L. Panchenko
TI  - Creep and stress relaxation in the material of a~cylindrical layer under it linear motion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 44
EP  - 50
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a4/
LA  - ru
ID  - SJIM_2016_19_4_a4
ER  - 
%0 Journal Article
%A L. V. Kovtanyuk
%A G. L. Panchenko
%T Creep and stress relaxation in the material of a~cylindrical layer under it linear motion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 44-50
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a4/
%G ru
%F SJIM_2016_19_4_a4
L. V. Kovtanyuk; G. L. Panchenko. Creep and stress relaxation in the material of a~cylindrical layer under it linear motion. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 4, pp. 44-50. http://geodesic.mathdoc.fr/item/SJIM_2016_19_4_a4/

[1] Oleinikov A. A., Pekarsh A. A., Integrirovannoe proektirovanie protsessov izgotovleniya monolitnykh panelei, Ekom, M., 2009

[2] Lee E. H., “Elastic-plastic deformation at finite strains”, Trans. ASME J. Appl. Mech., 36:1 (1969), 1–6 | DOI | Zbl

[3] Levitas V. A., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Nauk. dumka, Kiev, 1987

[4] Bykovtsev G. A., Shitikov A. V., “Konechnye deformatsii uprugoplasticheskikh sred”, Dokl. AN, 311:1 (1990), 59–62 | MR | Zbl

[5] Xia Z., Ellyn F., “A finite elastoplastic constitutive formulation with new co-rotational stressrate and strain-hardening rule”, Trans. ASME J. Appl. Mech., 62:3 (1995), 733–739 | DOI | Zbl

[6] Burenin A. A., Bykovtsev G. A., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, Dokl. AN, 347:2 (1996), 199–201 | Zbl

[7] Myasnikov V. P., “Uravneniya dvizheniya uprugoplasticheskikh materialov pri bolshikh deformatsiyakh”, Vestn. DVO RAN, 1996, no. 4, 8–13

[8] Rogovoi A. A., “Opredelyayuschie sootnosheniya dlya konechnykh uprugo-neuprugikh deformatsii”, Prikl. mekhanika i tekhn. fizika, 46:5 (2005), 138–149 | MR | Zbl

[9] Burenin A. A., Kovtanyuk L. V., Bolshie neobratimye deformatsii i uprugoe posledeistvie, Dalnauka, Vladivostok, 2013

[10] Shutov A. V., Ihlemann J., “Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change”, Internat. J. Plasticity, 63 (2014), 183–197 | DOI

[11] Belykh S. V., Bormotin K. S., Burenin A. A., Kovtanyuk L. V., Prokudin A. N., “O bolshikh izotermicheskikh deformatsiyakh materialov s uprugimi, vyazkimi i plasticheskimi svoistvami”, Vestn. ChGPU im. I. Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 22:4 (2014), 145–157

[12] Kovtanyuk L. V., “O prodavlivanii uprugovyazkoplasticheskogo materiala cherez zhestkuyu krugovuyu tsilindricheskuyu matritsu”, Dokl. AN, 400:6 (2005), 764–767 | MR

[13] Burenin A. A., Kovtanyuk L. V., Mazelis A. L., “Prodavlivanie uprugovyazkoplasticheskogo materiala mezhdu zhestkimi koaksialnymi tsilindricheskimi poverkhnostyami”, Prikl. matematika i mekhanika, 70:3 (2006), 481–489 | Zbl

[14] Burenin A. A., Kovtanyuk L. V., “Razvitie i tormozhenie techeniya uprugovyazkoplasticheskoi sredy v tsilindricheskoi trube”, Prikl. matematika i mekhanika, 77:5 (2013), 788–798 | MR

[15] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “Neizotermicheskoe dvizhenie uprugovyazkoplasticheskoi sredy v trube v usloviyakh izmenyayuschegosya perepada davleniya”, Dokl. AN, 464:3 (2015), 284–287 | DOI | MR

[16] Panchenko G. L., “O pryamolineinom techenii v uprugovyazkoplasticheskom tsilindricheskom sloe v usloviyakh odnostoronnego prilipaniya”, Vychisl. mekhanika sploshnykh sred, 4:4 (2011), 86–96

[17] Lure A. A., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[18] Godunov S. K., Romenskii E. A., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998

[19] Norton F. H., The creep of steel at high temperatures, McGraw-Hill book, N.Y. etc., 1929