A contact problem for an elastic plate with a~thin rigid inclusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 90-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equilibrium problem for a plate under the influence of external forces is investigated. It is assumed that the plate contains a thin rigid inclusion that reaches the boundary under zero angle and is in partial contact with an undeformable solid. There is a delamination at one of the faces of the inclusion. A complete Kirchhoff–Love model is considered, where the unknown functions are the vertical and horizontal displacements of the points of the middle surface of the plate. We give a differential statement and a variational statement of the problem and prove the existence and uniqueness of a solution.
Keywords: plate, rigid inclusion, contact problem, fictitious domain.
@article{SJIM_2016_19_3_a8,
     author = {I. V. Frankina},
     title = {A contact problem for an elastic plate with a~thin rigid inclusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {90--98},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a8/}
}
TY  - JOUR
AU  - I. V. Frankina
TI  - A contact problem for an elastic plate with a~thin rigid inclusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 90
EP  - 98
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a8/
LA  - ru
ID  - SJIM_2016_19_3_a8
ER  - 
%0 Journal Article
%A I. V. Frankina
%T A contact problem for an elastic plate with a~thin rigid inclusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 90-98
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a8/
%G ru
%F SJIM_2016_19_3_a8
I. V. Frankina. A contact problem for an elastic plate with a~thin rigid inclusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 90-98. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a8/

[1] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[2] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[3] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[4] Scherbakov V. V., “Suschestvovanie optimalnoi formy tonkikh zhestkikh vklyuchenii v plastine Kirkhgofa–Lyava”, Sib. zhurn. industr. matematiki, 16:4 (2013), 142–151 | MR

[5] Neustroeva N. V., “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[6] Rudoi E. M., “Proizvodnaya po forme oblasti integrala energii v teorii uprugosti dlya tel s zhestkimi vklyucheniyami i treschinami”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 12:2 (2012), 108–122

[7] Kovtunenko V. A., “Reshenie zadachi ob optimalnom razreze v uprugoi balke”, Prikl. mekhanika i tekhn. fizika, 40:5 (1999), 149–157 | MR | Zbl

[8] Khludnev A. M., “Thin inclusions in elastic bodies crossing an external boundary”, Z. Angew. Math. Mech., 95:11 (2015), 1256–1267 | DOI | MR | Zbl

[9] Khludnev A. M., Leugering G. R., “On Timoshenko thin elastic inclusions inside elastic bodies”, Mathematics and Mechanics of Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[10] Kovtunenko V. A., “Variatsionnaya i kraevaya zadachi s treniem na vnutrennei granitse”, Sib. mat. zhurn., 39:5 (1998), 1060–1073 | MR | Zbl

[11] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izvestiya RAN. Mekhanika tverdogo tela, 2007, no. 6, 113–127

[12] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[13] Lazarev N. P., Popova T. S., “Variatsionnaya zadacha o ravnovesii plastiny s geometricheski nelineinym usloviem nepronikaniya dlya vertikalnoi treschiny”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 11:2 (2011), 77–88 | Zbl

[14] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 32 (2012), 69–75 | DOI | MR | Zbl

[15] Rotanova T. A., “Kontakt plastin, zhestkie vklyucheniya v kotorykh vykhodyat na granitsu”, Vestn. Tomsk. gos. un-ta. Matematika. i mekhanika, 2011, no. 3, 99–107

[16] Rotanova T. A., “O postanovkakh i razreshimosti zadach o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl

[17] Khludnev A. M., “Contact problems for elastic bodies with rigid inclusions”, Quart. Appl. Math., 70 (2012), 269–284 | DOI | MR | Zbl

[18] Khludnev A. M., “Ob izgibe uprugoi plastiny s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 14:1 (2011), 114–126 | MR | Zbl

[19] Lazarev N. P., “Metod fiktivnykh oblastei v zadache o ravnovesii plastiny Timoshenko, kontaktiruyuschei s zhestkim prepyatstviem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:1 (2013), 91–104 | Zbl

[20] Hoffmann K.-H., Khludnev A. M., “Fictitious domain method for the Signorini problem in a linear elasticity”, Adv. Math. Sci. Appl., 14 (2004), 465–481 | MR | Zbl

[21] Nikolaeva N. A., “Metod fiktivnykh oblastei v zadache Sinorini o ravnovesii plastiny Kirkhgofa–Lyava”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 15:3 (2015), 78–90 | Zbl