Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_3_a6, author = {E. V. Pyatkina}, title = {Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {75--84}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/} }
TY - JOUR AU - E. V. Pyatkina TI - Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 75 EP - 84 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/ LA - ru ID - SJIM_2016_19_3_a6 ER -
%0 Journal Article %A E. V. Pyatkina %T Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 75-84 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/ %G ru %F SJIM_2016_19_3_a6
E. V. Pyatkina. Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 75-84. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/
[1] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl
[2] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[3] Khludnev A. M., “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl
[4] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1984
[5] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[6] Khludnev A. M., Tani A., “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quart. Appl. Math., 66:3 (2008), 423–435 | DOI | MR | Zbl
[7] Ohtsuka K., “Generalized $J$-integrals and three dimentional fracturemechanics. I”, Hiroshima Math. J., 1981, no. 11, 21–51 | MR
[8] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh vblizi uglovykh i konicheskikh tochek”, Tr. Mosk. mat. obschestva, 50, 1987, 79–129 | MR | Zbl
[9] Zemlyanova A. Yu., Silvestrov V. V., “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl
[10] Khaslinger Ya., Neitaanmyaki P., Konechno-elementnaya approksimatsiya dlya optimalnogo proektirovaniya form: teoriya i prilozheniya, Mir, M., 1992
[11] Khludnev A. M., Sokolowski J., “The Griffith formula and the Rice–Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains”, European J. Appl. Math., 10:4 (1999), 379–394 | DOI | MR | Zbl
[12] Rudoi E. M., “Differentsirovanie funktsionalov energii v dvumernoi teorii uprugosti dlya tel, soderzhaschikh krivolineinye treschiny”, Prikl. mekhanika i tekhn. fizika, 45:6 (2004), 83–94 | MR | Zbl
[13] Karaulnyi P. V., “Optimalnoe upravlenie zhestkostyu vklyucheniya v uprugom tele”, Sib. zhurn. industr. matematiki, 17:1 (2014), 65–77 | MR | Zbl
[14] Scherbakov V. V., “Upravlenie zhestkostyu tonkikh vklyuchenii v uprugikh telakh s krivolineinymi treschinami”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 13:1 (2013), 135–149
[15] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurn. industr. matematiki, 16:1 (2013), 138–147 | MR
[16] Lazarev N. P., Neustroeva N. V., Nikolaeva N. A., “Optimalnoe upravlenie uglom naklona treschiny v zadache o ravnovesii plastiny Timoshenko”, Sib. elektron. mat. izv., 12 (2015), 300–308 | DOI | Zbl
[17] Lazarev N. P., “Suschestvovanie ekstremalnoi formy treschiny v zadache o ravnovesii plastiny Timoshenko”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 11:4 (2011), 49–69
[18] Scherbakov V. V., “Suschestvovanie optimalnoi formy tonkikh zhestkikh vklyuchenii v plastine Kirkhgofa–Lyava”, Sib. zhurn. industr. matematiki, 16:4 (2013), 142–151 | MR
[19] Rudoi E. M., “Analiz chuvstvitelnosti resheniya zadachi ravnovesiya uprugogo tela s tonkim zhestkim vklyucheniem k izmeneniyuformy oblasti”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 14:2 (2014), 69–87
[20] Sokolowski J., Zolesio J. P., Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verl., Berlin, 1992 | MR | Zbl
[21] Harbrecht H., “Analytical and numerical methods in shape optimization”, Math. Meth. Appl. Sci., 31 (2008), 2095–2114 | DOI | MR | Zbl
[22] Allaire G., Jouve F., Toader A.-M., “Structural optimization using sensitivity analysis and a level-set method”, J. Comput. Phys., 194 (2004), 363–393 | DOI | MR | Zbl
[23] Belhachmi Z., Meftahi H., “Shape sensitivity analsis for an interface problem via minimax”, Appl. Math. Comput., 219 (2013), 6828–6842 | MR | Zbl
[24] Sokolowski J., “Nonsmooth optimal design problems for the Kirchhoff plate with unilateral conditions”, Kybernetika, 29:3 (1993), 284–290 | MR | Zbl
[25] Schmidt S., Schulz V., “Shape derivatives for general objective functions and the incompressible Navier–Stokes equations”, Control and Cybernetics, 39:3 (2010), 677–713 | MR | Zbl