Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 75-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equilibrium problem for a two-layer elastic body. One of the plates contains a crack. The second is a disk centered at one of the crack tips. The spherical layer is glued by its edge to the first plate. The unique solvability is proved of the problem in the nonlinear setting. An optimal control problem is also considered. The radius of the second layer $a$ is chosen as the control function. It is assumed that $a$ is positive and takes values in a closed interval. We show that there exist a value of $a$ minimizing the functional that characterizes the change of the potential energy as the crack length increases and a value of $a$ that characterizes the opening of the crack.
Keywords: elastic plate, overlapping domain, crack with nonpenetration, optimal control problem.
@article{SJIM_2016_19_3_a6,
     author = {E. V. Pyatkina},
     title = {Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/}
}
TY  - JOUR
AU  - E. V. Pyatkina
TI  - Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 75
EP  - 84
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/
LA  - ru
ID  - SJIM_2016_19_3_a6
ER  - 
%0 Journal Article
%A E. V. Pyatkina
%T Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 75-84
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/
%G ru
%F SJIM_2016_19_3_a6
E. V. Pyatkina. Optimal control of the shape of a~layer shape in the equilibrium problem of elastic bodies with overlapping domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 75-84. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a6/

[1] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl

[2] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[3] Khludnev A. M., “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl

[4] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1984

[5] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl

[6] Khludnev A. M., Tani A., “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quart. Appl. Math., 66:3 (2008), 423–435 | DOI | MR | Zbl

[7] Ohtsuka K., “Generalized $J$-integrals and three dimentional fracturemechanics. I”, Hiroshima Math. J., 1981, no. 11, 21–51 | MR

[8] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh vblizi uglovykh i konicheskikh tochek”, Tr. Mosk. mat. obschestva, 50, 1987, 79–129 | MR | Zbl

[9] Zemlyanova A. Yu., Silvestrov V. V., “Zadacha o podkreplenii plastiny s vyrezom pri pomoschi dvumernoi nakladki”, Prikl. matematika i mekhanika, 71:1 (2007), 43–55 | MR | Zbl

[10] Khaslinger Ya., Neitaanmyaki P., Konechno-elementnaya approksimatsiya dlya optimalnogo proektirovaniya form: teoriya i prilozheniya, Mir, M., 1992

[11] Khludnev A. M., Sokolowski J., “The Griffith formula and the Rice–Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains”, European J. Appl. Math., 10:4 (1999), 379–394 | DOI | MR | Zbl

[12] Rudoi E. M., “Differentsirovanie funktsionalov energii v dvumernoi teorii uprugosti dlya tel, soderzhaschikh krivolineinye treschiny”, Prikl. mekhanika i tekhn. fizika, 45:6 (2004), 83–94 | MR | Zbl

[13] Karaulnyi P. V., “Optimalnoe upravlenie zhestkostyu vklyucheniya v uprugom tele”, Sib. zhurn. industr. matematiki, 17:1 (2014), 65–77 | MR | Zbl

[14] Scherbakov V. V., “Upravlenie zhestkostyu tonkikh vklyuchenii v uprugikh telakh s krivolineinymi treschinami”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 13:1 (2013), 135–149

[15] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurn. industr. matematiki, 16:1 (2013), 138–147 | MR

[16] Lazarev N. P., Neustroeva N. V., Nikolaeva N. A., “Optimalnoe upravlenie uglom naklona treschiny v zadache o ravnovesii plastiny Timoshenko”, Sib. elektron. mat. izv., 12 (2015), 300–308 | DOI | Zbl

[17] Lazarev N. P., “Suschestvovanie ekstremalnoi formy treschiny v zadache o ravnovesii plastiny Timoshenko”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 11:4 (2011), 49–69

[18] Scherbakov V. V., “Suschestvovanie optimalnoi formy tonkikh zhestkikh vklyuchenii v plastine Kirkhgofa–Lyava”, Sib. zhurn. industr. matematiki, 16:4 (2013), 142–151 | MR

[19] Rudoi E. M., “Analiz chuvstvitelnosti resheniya zadachi ravnovesiya uprugogo tela s tonkim zhestkim vklyucheniem k izmeneniyuformy oblasti”, Vestn. NGU. Ser. Matematika. Mekhanika. Informatika, 14:2 (2014), 69–87

[20] Sokolowski J., Zolesio J. P., Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verl., Berlin, 1992 | MR | Zbl

[21] Harbrecht H., “Analytical and numerical methods in shape optimization”, Math. Meth. Appl. Sci., 31 (2008), 2095–2114 | DOI | MR | Zbl

[22] Allaire G., Jouve F., Toader A.-M., “Structural optimization using sensitivity analysis and a level-set method”, J. Comput. Phys., 194 (2004), 363–393 | DOI | MR | Zbl

[23] Belhachmi Z., Meftahi H., “Shape sensitivity analsis for an interface problem via minimax”, Appl. Math. Comput., 219 (2013), 6828–6842 | MR | Zbl

[24] Sokolowski J., “Nonsmooth optimal design problems for the Kirchhoff plate with unilateral conditions”, Kybernetika, 29:3 (1993), 284–290 | MR | Zbl

[25] Schmidt S., Schulz V., “Shape derivatives for general objective functions and the incompressible Navier–Stokes equations”, Control and Cybernetics, 39:3 (2010), 677–713 | MR | Zbl