A contact problem for a~viscoelastic plate and an elastic beam
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of contact of a viscoelastic plate with an elastic beam. For characterizing the viscoelastic deformation of the plate, we use hereditary integrals. We present a differential statement of the problem with conditions having the form of a system of equalities and inequalities in the domain of possible contact and prove its equivalence to a variational inequality. We establish the unique solvability and the existence of the derivative of a solution with respect to time. The limit problem is considered with the parameter of bending rigidity of the plate tending to infinity.
Keywords: viscoelasticity, beam, plate, hereditary integral, variational inequality, nonpenetration condition.
@article{SJIM_2016_19_3_a3,
     author = {T. S. Popova},
     title = {A contact problem for a~viscoelastic plate and an elastic beam},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a3/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - A contact problem for a~viscoelastic plate and an elastic beam
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 41
EP  - 54
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a3/
LA  - ru
ID  - SJIM_2016_19_3_a3
ER  - 
%0 Journal Article
%A T. S. Popova
%T A contact problem for a~viscoelastic plate and an elastic beam
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 41-54
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a3/
%G ru
%F SJIM_2016_19_3_a3
T. S. Popova. A contact problem for a~viscoelastic plate and an elastic beam. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/SJIM_2016_19_3_a3/