A method of solving an exterior three-dimensional boundary value problem for the Laplace equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 88-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop and experimentally study the algorithms for solving three-dimensional boundary value problems for the Laplace equation in unbounded domains. The algoriths combinef the finite element method and the integral representation of the solution in homogeneous media. The proposed approach is based on the Schwarz alternating method and the consecutive solution of the interior and exterior boundary value problems in subdomains with intersection such that some iterable interface conditions are imposed on the adjacent boundaries. The convergence of the method is proved. The convergence rate of the iterative process is studied analytically in the case that the subdomains are spherical layers with known exact representations of all consecutive approximations. In this model situation, the impact is analyzed of the parameters of the algorithm on the efficiency of the method. The above approach is implemented for solving a problem with a complicated configuration of the boundary. Also, the algorithbm uses high precision finite element methods for solving the interior boundary problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated by a series of numerical experiments.
Mots-clés : Laplace equation
Keywords: exterior boundary problem, Schwartz alternating method.
@article{SJIM_2016_19_2_a7,
     author = {A. O. Savchenko and V. P. Il'in and D. S. Butyugin},
     title = {A method of solving an exterior three-dimensional boundary value problem for the {Laplace} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/}
}
TY  - JOUR
AU  - A. O. Savchenko
AU  - V. P. Il'in
AU  - D. S. Butyugin
TI  - A method of solving an exterior three-dimensional boundary value problem for the Laplace equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 88
EP  - 99
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/
LA  - ru
ID  - SJIM_2016_19_2_a7
ER  - 
%0 Journal Article
%A A. O. Savchenko
%A V. P. Il'in
%A D. S. Butyugin
%T A method of solving an exterior three-dimensional boundary value problem for the Laplace equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 88-99
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/
%G ru
%F SJIM_2016_19_2_a7
A. O. Savchenko; V. P. Il'in; D. S. Butyugin. A method of solving an exterior three-dimensional boundary value problem for the Laplace equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 88-99. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/

[1] Bramble J. H., Pasciak J. E., “Analysis of a Cartesian PML approximation to the three dimensional electromagnetic scattering problem”, Internat. J. Numer. Anal. Model., 9:3 (2012), 543–561 | MR | Zbl

[2] Atkinson K., “A Survey of boundary integral equation methods for the numerical solution of Laplace's equation in three dimensions”, Numer. Solution of Integral Equations, 42 (1990), 1–34 | DOI | MR | Zbl

[3] Kleefeld A., Tzu-Chu Lin, “Boundary element collocation method for solving the exterior Neumann problem for Helmholtz's equation in three dimensions”, Electron. Trans. Numer. Anal., 39 (2012), 113–143 | MR | Zbl

[4] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985 | MR

[5] Kupradze V. D., Aleksidze M. A., “Metod funktsionalnykh uravnenii dlya priblizhennogo resheniya nekotorykh granichnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 4:4 (1964), 683–715 | MR | Zbl

[6] Fairweather G., Karageorgis A., “The method of fundamental solutions for elliptic boundary value problems”, Adv. Comput. Math., 9 (1998), 69–95 | DOI | MR | Zbl

[7] Golberg M. A., Chen C. S., “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Boundary Integral Methods. Numerical and Mathematical Aspects, Computational Mechanics Publ., 1998, 103–176 | MR

[8] Kanunnikova E. A., Matematicheskoe modelirovanie elektricheskikh polei metodom inversii, Izd-vo BGTU, Belgorod, 2010

[9] Vabischevich P. N., Pulatov P. A., “Chislennoe reshenie vneshnei zadachi Neimana”, Zhurn. vychisl. matematiki i mat. fiziki, 27:4 (1987), 536–543 | MR | Zbl

[10] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1962 | MR

[11] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[12] Schwarz H. A., “Uber einen Grenzubergang durch alternierendes Verfahren”, Ges. Math. Abh., 2, Berlin, 1890, 133–143

[13] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[14] Girault V., Raviart P., Finite Element Methods for Navier–Stockes Equations, Springer Verl., N.Y., 1986 | MR

[15] Karniadakis G. E., Sherwin S. J., “Spectral/hp element methods for CFD”, Numerical Mathematics and Scientific Computation, Oxford. Univ. Press, N.Y., 1999 | MR | Zbl

[16] Logg A., Mardal K. A., Wells G. N. et al., Automated Solution of Differential Equations by the Finite Element Method, Springer Verl., 2012 | MR | Zbl

[17] PETSc Web page: http://www.mcs.anl.gov/petsc

[18] Schöberl J., “NETGEN An advancing front 2D/3D-mesh generator based on abstract rules”, Comput. Visualization in Sci., 1:1 (1997), 41–52 | DOI | Zbl