Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_2_a7, author = {A. O. Savchenko and V. P. Il'in and D. S. Butyugin}, title = {A method of solving an exterior three-dimensional boundary value problem for the {Laplace} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {88--99}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/} }
TY - JOUR AU - A. O. Savchenko AU - V. P. Il'in AU - D. S. Butyugin TI - A method of solving an exterior three-dimensional boundary value problem for the Laplace equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 88 EP - 99 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/ LA - ru ID - SJIM_2016_19_2_a7 ER -
%0 Journal Article %A A. O. Savchenko %A V. P. Il'in %A D. S. Butyugin %T A method of solving an exterior three-dimensional boundary value problem for the Laplace equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 88-99 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/ %G ru %F SJIM_2016_19_2_a7
A. O. Savchenko; V. P. Il'in; D. S. Butyugin. A method of solving an exterior three-dimensional boundary value problem for the Laplace equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 88-99. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a7/
[1] Bramble J. H., Pasciak J. E., “Analysis of a Cartesian PML approximation to the three dimensional electromagnetic scattering problem”, Internat. J. Numer. Anal. Model., 9:3 (2012), 543–561 | MR | Zbl
[2] Atkinson K., “A Survey of boundary integral equation methods for the numerical solution of Laplace's equation in three dimensions”, Numer. Solution of Integral Equations, 42 (1990), 1–34 | DOI | MR | Zbl
[3] Kleefeld A., Tzu-Chu Lin, “Boundary element collocation method for solving the exterior Neumann problem for Helmholtz's equation in three dimensions”, Electron. Trans. Numer. Anal., 39 (2012), 113–143 | MR | Zbl
[4] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985 | MR
[5] Kupradze V. D., Aleksidze M. A., “Metod funktsionalnykh uravnenii dlya priblizhennogo resheniya nekotorykh granichnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 4:4 (1964), 683–715 | MR | Zbl
[6] Fairweather G., Karageorgis A., “The method of fundamental solutions for elliptic boundary value problems”, Adv. Comput. Math., 9 (1998), 69–95 | DOI | MR | Zbl
[7] Golberg M. A., Chen C. S., “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Boundary Integral Methods. Numerical and Mathematical Aspects, Computational Mechanics Publ., 1998, 103–176 | MR
[8] Kanunnikova E. A., Matematicheskoe modelirovanie elektricheskikh polei metodom inversii, Izd-vo BGTU, Belgorod, 2010
[9] Vabischevich P. N., Pulatov P. A., “Chislennoe reshenie vneshnei zadachi Neimana”, Zhurn. vychisl. matematiki i mat. fiziki, 27:4 (1987), 536–543 | MR | Zbl
[10] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1962 | MR
[11] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966
[12] Schwarz H. A., “Uber einen Grenzubergang durch alternierendes Verfahren”, Ges. Math. Abh., 2, Berlin, 1890, 133–143
[13] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[14] Girault V., Raviart P., Finite Element Methods for Navier–Stockes Equations, Springer Verl., N.Y., 1986 | MR
[15] Karniadakis G. E., Sherwin S. J., “Spectral/hp element methods for CFD”, Numerical Mathematics and Scientific Computation, Oxford. Univ. Press, N.Y., 1999 | MR | Zbl
[16] Logg A., Mardal K. A., Wells G. N. et al., Automated Solution of Differential Equations by the Finite Element Method, Springer Verl., 2012 | MR | Zbl
[17] PETSc Web page: http://www.mcs.anl.gov/petsc
[18] Schöberl J., “NETGEN An advancing front 2D/3D-mesh generator based on abstract rules”, Comput. Visualization in Sci., 1:1 (1997), 41–52 | DOI | Zbl