Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 74-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: delamination crack, thin rigid inclusion, nonpenetration condition, variational inequality, Uzawa algorithm.
Mots-clés : domain decomposition method
@article{SJIM_2016_19_2_a6,
     author = {E. M. Rudoy},
     title = {Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {74--87},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a6/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 74
EP  - 87
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a6/
LA  - ru
ID  - SJIM_2016_19_2_a6
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 74-87
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a6/
%G ru
%F SJIM_2016_19_2_a6
E. M. Rudoy. Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 74-87. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a6/

[1] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[2] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[3] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[5] Rudoi E. M., “Metod dekompozitsii oblasti dlya modelnoi zadachi teorii treschin s vozmozhnym kontaktom beregov”, Zhurn. vychisl. matematiki i mat. fiziki, 55:2 (2015), 310–321 | DOI | MR

[6] Rudoy E., “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM: M2AN, 2015 | DOI

[7] Kovtunenko V. A., “Numerical simulation of the non-linear crack problem with nonpenetration”, Math. Meth. Appl. Sci., 27:2 (2004), 163–179 | DOI | MR | Zbl

[8] Hintermüller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. Appl. Math., 69:1 (2004), 1–26 | DOI | MR | Zbl

[9] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi dlya uravneniya Puassona s ogranicheniyami tipa neravenstv v oblasti s razrezom”, Sib. zhurn. industr. matematiki, 8:1 (2005), 41–49 | MR

[10] Aleksandrov V. M., Smetanin B. I., Sobol B. V., Tonkie kontsentratory napryazhenii v uprugikh telakh, Fizmatlit, M., 1993

[11] Berezhnitskii L. T., Panasyuk V. V., Staschuk N. G., Vzaimodeistvie zhestkikh lineinykh vklyuchenii i treschin v deformiruemom tele, Nauk. dumka, Kiev, 1983

[12] Khludnev A. M., Leugering G., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91 (2011), 125–137 | DOI | MR | Zbl

[13] Khludnev A. M., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33 (2010), 1955–1967 | MR | Zbl

[14] Rudoi E. M., “Invariantnye integraly v ploskoi zadache teorii uprugosti dlya tel s zhestkimi vklyucheniyami i treschinami”, Sib. zhurn. industr. matematiki, 15:1 (2012), 99–109 | MR | Zbl

[15] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[16] Rudoy E. M., “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Meth. Appl. Sci., 2015 | DOI

[17] Scherbakov V. V., “Ob odnoi zadache upravleniya formoi tonkikh vklyuchenii v uprugikh telakh”, Sib. zhurn. industr. matematiki, 16:1 (2013), 138–147 | MR

[18] Scherbakov V. V., “O vybore optimalnoi formy tonkikh zhestkikh vklyuchenii v uprugikh telakh”, Prikl. matematika i tekhn. fizika, 56:2 (2015), 178–187

[19] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[20] Bigoni D., Dal Corso F., Gei M., “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II. Implications on shear band nucleation, growth and energy release rate”, J. Mech. Phys. Solids, 56 (2008), 839–857 | DOI | MR | Zbl

[21] Dal Corso F., Bigoni D., Gei M., “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56 (2008), 815–838 | DOI | MR | Zbl

[22] Chaudhuri R. A., “On three-dimensional singular stress/residual stress fields at the front of a crack/anticrack in an orthotropic/orthorhombic plate under anti-plane shear loading”, Comp. Struct., 92 (2010), 1977–1984 | DOI

[23] Quarteroni A., Valli A., Domain decomposition methods for partial differential equations, Clarendon Press, 1999 | MR | Zbl

[24] Laevskii Yu. M., Matsokin A. M., “Metody dekompozitsii resheniya ellipticheskikh i parabolicheskikh kraevykh zadach”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 361–372 | Zbl

[25] Astrakhantsev G. P., “Metod dekompozitsii oblasti dlya zadachi ob izgibe neodnorodnoi plastiny”, Zhurn. vychisl. matematiki i mat. fiziki, 38:10 (1998), 1758–1766 | MR | Zbl

[26] Rukavishnikov A. V., “Metod dekompozitsii oblasti i chislennyi analiz dlya odnoi zadachi gidrodinamiki”, Zhurn. vychisl. matematiki i mat. fiziki, 54:9 (2014), 1515–1536 | DOI | MR | Zbl

[27] Bayada G., Sabil J., Sassi T., “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law”, ESAIM: Math. Modelling and Numer. Anal., 42 (2008), 243–262 | DOI | MR | Zbl

[28] Ekeland I., Temam R., Convex Analysis and Variational Problems, SIAM, 1999 | MR

[29] Ito K., Kunisch K., Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008 | MR | Zbl

[30] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 29 (2010), 69–75 | DOI | MR

[31] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Ucheb. posobie dlya vuzov, Nauka, M., 1988

[32] Allaire G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Univ. Press, Oxford, 2007 | MR | Zbl

[33] Syarle F., Metod konechnykh elementov dlya matematicheskikh zadach, Mir, M., 1980