The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 37-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of isothermal acoustics in a composite medium consisting of two different porous soils (poroelastic domains) with common boundary. Each of the domains has its own characteristics of the solid skeleton; the fluid filling the pores is the same for both domains. The differential equations of the accurate model contain rapidly oscillating coefficients. We deduce homogenized equations (i.e. equations not containing rapidly oscillating coefficients).
Keywords: composite medium, periodic structure, isothermal Stokes equations, acoustics equations, poroelasticity, homogenization of periodic structures, two-scale convergence.
@article{SJIM_2016_19_2_a3,
     author = {A. A. Gerus and S. A. Gritsenko and A. M. Meirmanov},
     title = {The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/}
}
TY  - JOUR
AU  - A. A. Gerus
AU  - S. A. Gritsenko
AU  - A. M. Meirmanov
TI  - The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 37
EP  - 46
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/
LA  - ru
ID  - SJIM_2016_19_2_a3
ER  - 
%0 Journal Article
%A A. A. Gerus
%A S. A. Gritsenko
%A A. M. Meirmanov
%T The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 37-46
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/
%G ru
%F SJIM_2016_19_2_a3
A. A. Gerus; S. A. Gritsenko; A. M. Meirmanov. The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya vibratsii, Mir, M., 1984 | MR

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[4] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Internat. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[5] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[6] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 48:3 (2007), 645–667 | MR | Zbl

[7] Meirmanov A., “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Europ. J. Appl. Math., 19 (2008), 259–284 | DOI | MR | Zbl

[8] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[9] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 51:1 (2010), 156–174 | MR | Zbl

[10] Meirmanov A., “Uravneniya akustiki v uprugikh poristykh sredakh”, Sib. zhurn. industr. matematiki, 13:2 (2010), 98–110 | MR | Zbl

[11] Meirmanov A., “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci., 163:2 (2009), 111–172 | DOI | MR

[12] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures Appl., 64 (1985), 31–75 | MR | Zbl