Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_2_a3, author = {A. A. Gerus and S. A. Gritsenko and A. M. Meirmanov}, title = {The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {37--46}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/} }
TY - JOUR AU - A. A. Gerus AU - S. A. Gritsenko AU - A. M. Meirmanov TI - The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 37 EP - 46 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/ LA - ru ID - SJIM_2016_19_2_a3 ER -
%0 Journal Article %A A. A. Gerus %A S. A. Gritsenko %A A. M. Meirmanov %T The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 37-46 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/ %G ru %F SJIM_2016_19_2_a3
A. A. Gerus; S. A. Gritsenko; A. M. Meirmanov. The deduction of the homogenized model of isothermal acoustics in a~heterogeneous medium in the case of two different poroelastic domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a3/
[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya vibratsii, Mir, M., 1984 | MR
[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR
[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR
[4] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Internat. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[5] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[6] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 48:3 (2007), 645–667 | MR | Zbl
[7] Meirmanov A., “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Europ. J. Appl. Math., 19 (2008), 259–284 | DOI | MR | Zbl
[8] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[9] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 51:1 (2010), 156–174 | MR | Zbl
[10] Meirmanov A., “Uravneniya akustiki v uprugikh poristykh sredakh”, Sib. zhurn. industr. matematiki, 13:2 (2010), 98–110 | MR | Zbl
[11] Meirmanov A., “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci., 163:2 (2009), 111–172 | DOI | MR
[12] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures Appl., 64 (1985), 31–75 | MR | Zbl