Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an identification problem for a stationary nonlinear convection-diffusion-reaction equation in which the reaction coefficient depends nonlinearly on the concentration of the substance. This problem is reduced to an inverse extremal problem by optimization. Solvability is proved of the boundary value problem and the optimization problem. In the case that the reaction coefficient is quadratic when the equation acquires cubic nonlinearity, we deduce the conditions of optimality. Analyzing the latter, we establish estimates of the local stability of solutions to the eoptimization problem under small perturbations both of the cost functional and of the given velocity vector that occurs multiplicatively in the convection-diffusion-reaction equation.
Keywords: nonlinear convection-diffusion-reaction equation, Dirichlet problem, optimal control problem, solvability, optimality conditions, stability estimate.
@article{SJIM_2016_19_2_a0,
     author = {G. V. Alekseev and R. V. Brizitskii and Zh. Yu. Saritskaya},
     title = {Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
TI  - Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 3
EP  - 16
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a0/
LA  - ru
ID  - SJIM_2016_19_2_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%T Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 3-16
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a0/
%G ru
%F SJIM_2016_19_2_a0
G. V. Alekseev; R. V. Brizitskii; Zh. Yu. Saritskaya. Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2016_19_2_a0/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[2] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[3] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988 | MR

[4] Ito K., Kunish K., “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR

[5] Agoshkov V. I., Minuk F. P., Rusakov A. S., Zalesny V. B., “Study and solution of identification problems for nonstationary 2D- and 3D-convection-diffusion-reaction”, Russ. J. Numer. Anal. Math. Modelling, 20 (2005), 19–43 | DOI | MR | Zbl

[6] Alekseev G. V., Adomavichus E. A., “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9 (2001), 435–468 | DOI | MR | Zbl

[7] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii v teorii massoperenosa”, Zhurn. vychisl. matematiki i mat. fiziki, 42:3 (2002), 380–394 | MR | Zbl

[8] Alekseev G. V., Kalinina E. A., “Identifikatsiya mladshego koeffitsienta dlya statsionarnogo uravneniya konvektsii-diffuzii-reaktsii”, Sib. zhurn. industr. matematiki, 10:1 (2007), 3–16 | MR | Zbl

[9] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhanika i tekhn. fizika, 2008, no. 4, 24–35 | MR | Zbl

[10] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[11] Alekseev G. V., Vakhitov I. S., Soboleva O. V., “Otsenki ustoichivosti v zadachakh identifikatsii dlya uravneniya konvektsii-diffuzii-reaktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 52:12 (2012), 2190–2205 | MR | Zbl

[12] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. matematiki, 12:4 (2009), 421–434 | Zbl

[13] Dementeva E. V., Karepova E. D., Shaidurov V. V., “Vosstanovlenie granichnoi funktsii po dannym nablyudenii dlya zadachi rasprostraneniya poverkhnostnykh voln v akvatorii s otkrytoi granitsei”, Sib. zhurn. industr. matematiki, 16:1 (2013), 10–20 | MR | Zbl

[14] Korotkii A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki URO RAN, 12, no. 2, 2006, 88–97 | MR | Zbl

[15] Korotkii A. I., Kovtunov D. A., “Optimalnoe granichnoe upravlenie sistemoi, opisyvayuschei teplovuyu konvektsiyu”, Tr. In-ta matematiki i mekhaniki URO RAN, 16, no. 1, 2010, 76–101

[16] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999