Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_1_a8, author = {S. I. Fadeev and V. V. Kogai and T. M. Khlebodarova and V. A. Likhoshvai}, title = {On the numerical study of periodic solutions to delay equations in biological models}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {94--105}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a8/} }
TY - JOUR AU - S. I. Fadeev AU - V. V. Kogai AU - T. M. Khlebodarova AU - V. A. Likhoshvai TI - On the numerical study of periodic solutions to delay equations in biological models JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 94 EP - 105 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a8/ LA - ru ID - SJIM_2016_19_1_a8 ER -
%0 Journal Article %A S. I. Fadeev %A V. V. Kogai %A T. M. Khlebodarova %A V. A. Likhoshvai %T On the numerical study of periodic solutions to delay equations in biological models %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 94-105 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a8/ %G ru %F SJIM_2016_19_1_a8
S. I. Fadeev; V. V. Kogai; T. M. Khlebodarova; V. A. Likhoshvai. On the numerical study of periodic solutions to delay equations in biological models. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 94-105. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a8/
[1] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadiinogo sinteza bez vetvleniya”, Sib. zhurn. industr. matematiki, 7:1(17) (2004), 73–94 | MR | Zbl
[2] Fadeev S. I., Likhoshvai V. A., Shtokalo D. N., “Issledovanie modeli sinteza lineinykh biomolekul s uchetom obratimosti protsessov”, Sib. zhurn. industr. matematiki, 8:3(23) (2005), 149–162 | MR | Zbl
[3] McManus C. J., Graveley B. R., “RNA structure and the mechanisms of alternative splicing”, Curr. Opin. Genet. Develop., 21:4 (2011), 37337–37339 | DOI
[4] Kelemen O., Convertini P., Zhang Z., Wen Y., Shen M., Falaleeva M., Stamm S., “Function of alternative splicing”, Gene, 514:1 (2013), 1–30 | DOI
[5] Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T. M., “Alternative splicing can lead to chaos”, J. Bioinform. Comput. Biol., 13:1 (2015), 1540003 | DOI
[6] Likhoshvai V., Ratushny A., “Generalized Hill function method for modeling molecular processes”, J. Bioinform. Comput. Biol., 5:2B (2007), 521–531 | DOI
[7] Kogai V. V., Khlebodarova T. M., Fadeev S. I., Likhoshvai V. A., “Slozhnaya dinamika v sistemakh alternativnogo splaisinga mRNK: matematicheskaya model”, Vychisl. tekhnologii, 20:1 (2015), 38–52
[8] Hamburger V., Hamilton H. L., “A series of normal stages in the development of the chick embryo”, Develop. Dynam., 195:4 (1992), 231–272 | DOI
[9] Golubyatnikov V. P., Likhoshvai V. A., “Odnomernaya modelrazvitiya populyatsii zemnovodnykh”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 53–60 | MR | Zbl
[10] Dent P., Yacoub A., Contessa J., Caron R., Amorino G., Valerie K., Hagan M. P., Grant S., Schmidt-Ullrich R., “Stress and radiation–induced activation of multiple intracellular signaling pathways”, Radiat. Res., 159 (2003), 283–300 | DOI
[11] Keshet Y., Seger R., “The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions”, Meth. Mol. Biol., 661 (2010), 3–38 | DOI
[12] Munshi A., Ramesh R., “Mitogen-activated protein kinases and their role in radiation response”, Genes Cancer, 4 (2013), 401–408 | DOI
[13] Xu J., Zhang S., “Mitogen-activated protein kinase cascades in signaling plant growth and development”, Trends Plant Sci., 20 (2015), 56–64 | DOI
[14] Richardson M. K., Allen S. P., Wright G. M., Raynaud A., Hanken J., “Somite number and vertebrate evolution”, Development, 125 (1998), 151–160
[15] Gomez C., Ozbudak E. M., Wunderlich J., Baumann D., Lewis J., Pourquié O., “Control of segment number in vertebrate embryos”, Nature, 454:7202 (2008), 335–339 | DOI
[16] Dequéant M. L., Glynn E., Gaudenz K., Wahl M., Chen J., Mushegian A., Pourquié O., “A complex oscillating network of signaling genes underlies the mouse segmentation clock”, Science, 314:5805 (2006), 1595–1598 | DOI
[17] Dequéant M. L., Pourquié O., “Segmental patterning of the vertebrate embryonic axis”, Nat. Rev. Genet., 9:5 (2008), 370–382 | DOI
[18] Kageyama R., Masamizu Y., Niwa Y., “Oscillator mechanism of Notch pathway in the segmentation clock”, Develop. Dynam., 236:6 (2007), 1403–1409 | DOI | MR
[19] Ferjentsik Z., Hayashi S., Dale J. K., Bessho Y., Herreman A., De Strooper B., del Monte G., de la Pompa J. L., Maroto M., “Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites”, PLoS Genet., 5:9 (2009), e1000662 | DOI
[20] Ozbudak E. M., Pourquié O., “The vertebrate segmentation clock: the tip of the iceberg”, Curr. Opin. Genet. Develop., 18:4 (2008), 317–323 | DOI
[21] Schróter C., Herrgen L., Cardona A., Brouhard G. J., Feldman B., Oates A. C., “Dynamics of zebrafish somitogenesis”, Develop. Dynam., 237:3 (2008), 545–553 | DOI
[22] Gibb S., Maroto M., Dale J. K., “The segmentation clock mechanism moves up a notch”, Trends Cell. Biol., 20:10 (2010), 593–600 | DOI
[23] Gennerich A., Vale R. D., “Walking the walk: how kinesin and dynein coordinate their steps”, Curr. Opin. Cell. Biol., 21:1 (2009), 59–67 | DOI
[24] Kolomeisky A. B., “Motor proteins and molecular motors: how to operate machines at the nanoscale”, J. Phys. Condens. Matter., 25:46 (2013), 463101 | DOI
[25] Shiroguchi K., Kinosita K. (Jr.), “Myosin V walks by lever action and Brownian motion”, Science, 316:5828 (2007), 1208–1212 | DOI
[26] Fadeev S. I., “Programma chislennogo resheniya nelineinykh kraevykh zadach dlya sistem obyknovennykh differentsialnykh uravnenii s parametrom”, Vychisl. metody lineinoi algebry, Nauka, Novosibirsk, 1990, 104–200 | MR
[27] Fadeev S. I., Kogai V. V., Kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii, Ucheb. posobie, izd. NGU, Novosibirsk, 2012
[28] Kogai V. V., Fadeev S. I., Likhoshvai V. A., “O chislennom issledovanii avtokolebanii v gipoteticheskikh gennykh setyakh”, Vychisl. tekhnologii, 10:3 (2005), 56–71
[29] Likhoshvai V. A., Fadeev S. I., “Modeli tsiklicheskikh gennykh setei”, Sistemnaya kompyuternaya biologiya, Integratsionnye proekty SO RAN, 14, Izd-vo SO RAN, Novosibirsk, 2008, 410–420
[30] Likhoshvai V. A., Khlebodarova T. M., Bazhan S. I., Gainova I. A., Chereshnev V. A., Bocharov G. A., “Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components”, BMC Genomics, 15, Suppl. 12 (2014), S1 | DOI
[31] Pigolotti S., Krishna S., Jensen M. H., “Oscillation patterns in negative feedback loops”, Proc. Nat. Acad. Sci. USA, 104:16 (2007), 6533–6537 | DOI | MR | Zbl
[32] Goldbeter A., Pourquié O., “Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways”, J. Theor. Biol., 252:3 (2008), 574–585 | DOI | MR
[33] Wang Y., Paszek P., Horton C. A., Kell D. B., White M. R., Broomhead D. S., Muldoon M. R., “Interactions among oscillatory pathways in NF-kappa B signaling”, BMC Syst. Biol., 5 (2011), 23 | DOI | Zbl
[34] Jensen P. B., Pedersen L., Krishna S., Jensen M. H., “A Wnt oscillator model for somitogenesis”, Biophys. J., 98:6 (2010), 943–950 | DOI
[35] Schrøder T. D., Özalp V. C., Lunding A., Jernshøj K. D., Olsen L. F., “An experimental study of the regulation of glycolytic oscillations in yeast”, FEBS J., 280:23 (2013), 6033–6044 | DOI
[36] Klevecz R. R., Li C. M., Marcus I., Frankel P. H., “Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process”, FEBS J., 275 (2008), 2372–2384 | DOI