On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 82-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Dirichlet problem for an inhomogeneous $p$-Laplace equation with nonlinear source in presence of external mass forces, we obtain new sufficient conditions for the existence of a weak nonnegative bounded solution. The conditions are written in explicit form in terms of the data of the problem.
Mots-clés : $p$-Laplace equation
Keywords: regularized equation, a priori estimate.
@article{SJIM_2016_19_1_a7,
     author = {Ar. S. Tersenov},
     title = {On the existence of nonnegative solutions to the {Dirichlet} boundary value problem for the $p${-Laplace} equation in presence of external mass forces},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {82--93},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 82
EP  - 93
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/
LA  - ru
ID  - SJIM_2016_19_1_a7
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 82-93
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/
%G ru
%F SJIM_2016_19_1_a7
Ar. S. Tersenov. On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/

[1] Franca M., “Radial ground states and singular ground states for a spatial-dependent $p$-Laplace equation”, J. Differential Equations, 248 (2010), 2629–2656 | DOI | MR | Zbl

[2] Franchi B., Lanconelli E., Serrin J., “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$”, Adv. Math., 118 (1996), 177–243 | DOI | MR | Zbl

[3] Garcia-Huidobro M., Duvan A. H., “On the uniqueness of positive solutions of a quasilinear equation containing a weighted $p$-Laplacian, the superlinear case”, Comm. Contemp. Math., 10:3 (2008), 405–432 | DOI | MR | Zbl

[4] Azizieh C., Clement P., “A priori estimates and continuation methods for positive solutions of $p$-Laplace equations”, J. Differential Equations, 179 (2002), 213–245 | DOI | MR | Zbl

[5] Dai Qiuyi, Peng Lihui, “Necessary and sufficient conditions for the existence of nonnegative solutions of inhomogeneous $p$-Laplace equation”, Acta Math. Sci. Ser. B, 27:1 (2007), 34–56 | DOI | MR | Zbl

[6] Fan X., “Positive solutions to $p(x)$-Laplacian–Dirichlet problems with sigh-changing nonlinearities”, Math. Nachr., 284:11–12 (2011), 1435–1445 | DOI | MR | Zbl

[7] Hai D. D., “Positive solutions to a class of elliptic boundary value problems”, J. Math. Anal. Appl., 227 (1998), 195–199 | DOI | MR | Zbl

[8] Hai D. D., Xu X., “On a class of quasilinear problems with sign-changing nonlinearities”, Nonlinear Anal., 64 (2006), 1977–1983 | DOI | MR | Zbl

[9] Huang Y. X., “Existence of positive solutions for a class of the $p$-Laplace equations”, J. Austral. Math. Soc. Ser. B, 36 (1994), 249–264 | DOI | MR | Zbl

[10] Sanchon M., “Regularity of the extremal solution of some nonlinear elliptic problems involving the $p$-Laplacian”, Potential Anal., 27 (2007), 217–224 | DOI | MR | Zbl

[11] Starovoitov V. N., Tersenov Al. S., “Singular and degenerate anisotropic parabolic equations with a nonlinear source”, Nonlinear Anal., 72 (2010), 3009–3027 | DOI | MR | Zbl

[12] Tersenov Ar. S., “On sufficient conditions for the existence of radially symmetric solutions of the $p$-Laplace equation”, Nonlinear Anal., 95 (2014), 362–373 | DOI | MR | Zbl

[13] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer Verl., Berlin–Heidelberg, 1983 | MR | Zbl

[14] Tersenov Al., Tersenov Ar., “The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations”, J. Differential Equations, 235:2 (2007), 376–396 | DOI | MR | Zbl