Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2016_19_1_a7, author = {Ar. S. Tersenov}, title = {On the existence of nonnegative solutions to the {Dirichlet} boundary value problem for the $p${-Laplace} equation in presence of external mass forces}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {82--93}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/} }
TY - JOUR AU - Ar. S. Tersenov TI - On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2016 SP - 82 EP - 93 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/ LA - ru ID - SJIM_2016_19_1_a7 ER -
%0 Journal Article %A Ar. S. Tersenov %T On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces %J Sibirskij žurnal industrialʹnoj matematiki %D 2016 %P 82-93 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/ %G ru %F SJIM_2016_19_1_a7
Ar. S. Tersenov. On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a7/
[1] Franca M., “Radial ground states and singular ground states for a spatial-dependent $p$-Laplace equation”, J. Differential Equations, 248 (2010), 2629–2656 | DOI | MR | Zbl
[2] Franchi B., Lanconelli E., Serrin J., “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb R^n$”, Adv. Math., 118 (1996), 177–243 | DOI | MR | Zbl
[3] Garcia-Huidobro M., Duvan A. H., “On the uniqueness of positive solutions of a quasilinear equation containing a weighted $p$-Laplacian, the superlinear case”, Comm. Contemp. Math., 10:3 (2008), 405–432 | DOI | MR | Zbl
[4] Azizieh C., Clement P., “A priori estimates and continuation methods for positive solutions of $p$-Laplace equations”, J. Differential Equations, 179 (2002), 213–245 | DOI | MR | Zbl
[5] Dai Qiuyi, Peng Lihui, “Necessary and sufficient conditions for the existence of nonnegative solutions of inhomogeneous $p$-Laplace equation”, Acta Math. Sci. Ser. B, 27:1 (2007), 34–56 | DOI | MR | Zbl
[6] Fan X., “Positive solutions to $p(x)$-Laplacian–Dirichlet problems with sigh-changing nonlinearities”, Math. Nachr., 284:11–12 (2011), 1435–1445 | DOI | MR | Zbl
[7] Hai D. D., “Positive solutions to a class of elliptic boundary value problems”, J. Math. Anal. Appl., 227 (1998), 195–199 | DOI | MR | Zbl
[8] Hai D. D., Xu X., “On a class of quasilinear problems with sign-changing nonlinearities”, Nonlinear Anal., 64 (2006), 1977–1983 | DOI | MR | Zbl
[9] Huang Y. X., “Existence of positive solutions for a class of the $p$-Laplace equations”, J. Austral. Math. Soc. Ser. B, 36 (1994), 249–264 | DOI | MR | Zbl
[10] Sanchon M., “Regularity of the extremal solution of some nonlinear elliptic problems involving the $p$-Laplacian”, Potential Anal., 27 (2007), 217–224 | DOI | MR | Zbl
[11] Starovoitov V. N., Tersenov Al. S., “Singular and degenerate anisotropic parabolic equations with a nonlinear source”, Nonlinear Anal., 72 (2010), 3009–3027 | DOI | MR | Zbl
[12] Tersenov Ar. S., “On sufficient conditions for the existence of radially symmetric solutions of the $p$-Laplace equation”, Nonlinear Anal., 95 (2014), 362–373 | DOI | MR | Zbl
[13] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer Verl., Berlin–Heidelberg, 1983 | MR | Zbl
[14] Tersenov Al., Tersenov Ar., “The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations”, J. Differential Equations, 235:2 (2007), 376–396 | DOI | MR | Zbl